High-efficiency polymer solar cells with low temperature solution-processed SnO2/PFN as a dual-function electron transporting layer

被引:39
|
作者
Shen, Ping [1 ]
Yao, Mengnan [1 ]
Wang, Guoxin [1 ]
Mi, Ruoning [1 ]
Guo, Wenbin [1 ]
Bai, Yang [2 ,3 ]
Shen, Liang [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Jilin, Peoples R China
[2] Univ Queensland, Nanomat Ctr, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
关键词
POWER CONVERSION EFFICIENCY; CONJUGATED POLYELECTROLYTE; EXCEEDING; 10-PERCENT; PERFORMANCE; OXIDE; ZNO; EXTRACTION; FILMS; PTB7;
D O I
10.1039/c8ta06378h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron transporting layers (ETLs) existing between active layers and an electrode play a critical role in improving the performance parameters of polymer solar cells (PSCs). Traditional wide bandgap semiconductor metal oxides as ETLs usually require high temperature fabrication process, which is incompatible with flexible substrates as well as roll-to-roll manufacturing technology. Herein, we demonstrate high-efficiency PSCs with integrated low temperature solution-processed tin dioxide (SnO2) nanocrystals and a poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN) stacked structure as an ETL with excellent photoelectric performance. A combination of characterizations including ultraviolet photoelectron spectroscopy, transient photovoltage and transient photocurrent measurements, and impedance spectroscopy were used to systematically study the interfacial effects induced by the SnO2/PFN ETL. It shows that SnO2 nanocrystals can serve as an efficient electron-selective buffer except for an unmatched energy level, while the PFN interlayer can intentionally reduce the energy misalignment of devices through forming dipoles at the interface and effectively reduce the work function. With these dual functions, the-state of the-art PSCs based on SnO2/PFN outperform those based on SnO2-only in power conversion efficiency, from 4.31% to 11.05%. We believe that the SnO2/PFN bilayer structure integrating the function of enhanced electron extraction and reduced charge recombination can be applied to produce higher performance devices by using a low temperature solution-processed technique.
引用
收藏
页码:17401 / 17408
页数:8
相关论文
共 50 条
  • [1] Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells
    Mahmood, Khalid
    Khalid, Arshi
    Nawaz, Faisal
    Mehran, Muhammad Taqi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 532 : 387 - 394
  • [2] A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells
    Dong, Jiale
    Guo, Jian
    Wang, Xiaoliang
    Dong, Peng
    Wang, Zhongqiang
    Zhou, Yingjuan
    Miao, Yanqin
    Zhao, Bo
    Hao, Yuying
    Wang, Hua
    Xu, Bingshe
    Yin, Shougen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (41) : 46373 - 46380
  • [3] Low Temperature Processed SnO2 Electron Transporting Layer from Tin Oxalate for Perovskite Solar Cells
    Cheng, Nian
    Yu, Zhen
    Li, Weiwei
    Lei, Bao
    Zi, Wei
    Xiao, Zhenyu
    Zhao, Zhiqiang
    Zong, Peng-An
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15385 - 15391
  • [4] Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells
    Xiao, Biao
    Wu, Hongbin
    Cao, Yong
    MATERIALS TODAY, 2015, 18 (07) : 385 - 394
  • [5] Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells
    Park, Minwoo
    Kim, Jae-Yup
    Son, Hae Jung
    Lee, Chul-Ho
    Jang, Seung Soon
    Ko, Min Jae
    NANO ENERGY, 2016, 26 : 208 - 215
  • [6] Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells
    Zhou, Xiangqing
    Zhang, Wenfeng
    Wang, Xiaohong
    Lin, Puan
    Zhou, Shenghou
    Hu, Taotao
    Tian, Liuwen
    Wen, Fang
    Duan, Gongtao
    Yu, Lang
    Xiang, Yan
    Huang, Bensheng
    Huang, Yuelong
    APPLIED SURFACE SCIENCE, 2022, 584
  • [7] Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells
    Muthukrishnan, Akshaiya Padmalatha
    Lee, Junyeoung
    Kim, Jongbok
    Kim, Chang Su
    Jo, Sungjin
    RSC ADVANCES, 2022, 12 (08) : 4883 - 4890
  • [8] Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells
    Van-Huong Tran
    Ambade, Rohan B.
    Ambade, Swapnil B.
    Lee, Soo-Hyoung
    Lee, In-Hwan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) : 1645 - 1653
  • [9] Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells
    Ren, Xiaodong
    Yang, Dong
    Yang, Zhou
    Feng, Jiangshan
    Zhu, Xuejie
    Niu, Jinzhi
    Liu, Yucheng
    Zhao, Wangen
    Liu, Shengzhong Frank
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 2421 - 2429
  • [10] High-efficiency inverted polymer solar cells with solution-processed metal oxides
    Lin, Yu-Hong
    Yang, Po-Ching
    Huang, Jing-Shun
    Huang, Guo-Dong
    Wang, Ing-Jye
    Wu, Wen-Hao
    Lin, Ming-Yi
    Su, Wei-Fang
    Lin, Ching-Fuh
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) : 2511 - 2515