Pushing random walk beyond golden ratio

被引:0
|
作者
Amiri, Ehsan [1 ]
Skvortsov, Evgeny [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a simple modification of a well-known Random Walk algorithm for solving the Satisfiability problem and analyze its performance on random CNFs with a planted solution. We rigorously prove that the new algorithm solves the Full CNF with high probability, and for random CNFs with a planted solution of high density finds an assignment that differs from the planted in only e-fraction of variables. In the experiments the algorithm solves random CNFs with a planted solution of any density.
引用
收藏
页码:44 / +
页数:2
相关论文
共 50 条
  • [21] Golden Ratio Phenomenon of Random Data Obeying von Karman Spectrum
    Li, Ming
    Zhao, Andwei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [22] RANDOM WALK
    Butler, Mary Odell
    ANNALS OF ANTHROPOLOGICAL PRACTICE, 2006, 26 (01) : 20 - 31
  • [23] RANDOM WALK
    VESTAL, CK
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1962, 43 (08) : 433 - &
  • [24] 'WALK IN GOLDEN GATE PARK'
    MARKS, J
    FORUM-HOUSTON, 1977, 15 (2-3): : 69 - 69
  • [25] Examining AGN UV/Optical Variability beyond the Simple Damped Random Walk
    Yu, Weixiang
    Richards, Gordon T.
    Vogeley, Michael S.
    Moreno, Jackeline
    Graham, Matthew J.
    ASTROPHYSICAL JOURNAL, 2022, 936 (02):
  • [26] A random walk in physics. Beyond black holes and time-travels
    Sanjuan, Miguel A. F.
    CONTEMPORARY PHYSICS, 2021, 62 (04) : 246 - 247
  • [27] Random walk in random groups
    M. Gromov
    Geometric and Functional Analysis, 2003, 13 : 73 - 146
  • [28] Biased Random Walk on the Trace of Biased Random Walk on the Trace of ...
    Croydon, David
    Holmes, Mark
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1341 - 1372
  • [29] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [30] Quantum random walk polynomial and quantum random walk measure
    Kang, Yuanbao
    Wang, Caishi
    QUANTUM INFORMATION PROCESSING, 2014, 13 (05) : 1191 - 1209