Numerical Solution of Riemann-Hilbert Problems: Painlev, II

被引:31
|
作者
Olver, Sheehan [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
关键词
Riemann-Hilbert problems; Spectral methods; Collocation methods; Painleve transcendents;
D O I
10.1007/s10208-010-9079-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a new, spectrally accurate method for solving matrix-valued Riemann-Hilbert problems numerically. The effectiveness of this approach is demonstrated by computing solutions to the homogeneous Painlev, II equation. This can be used to relate initial conditions with asymptotic behavior.
引用
收藏
页码:153 / 179
页数:27
相关论文
共 50 条
  • [21] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Payandeh Najafabadi, Amir T.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2009, 74 (04): : 533 - 547
  • [22] On the origins of Riemann-Hilbert problems in mathematics*
    Bothner, Thomas
    NONLINEARITY, 2021, 34 (04) : R1 - R73
  • [23] RIEMANN-HILBERT PROBLEMS FOR THE RESOLVED CONIFOLD
    Bridgeland, Tom
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (03) : 395 - 435
  • [24] Separation Principles and Riemann-Hilbert Problems
    Gunter Semmler
    Elias Wegert
    Computational Methods and Function Theory, 2003, 2 (1) : 175 - 190
  • [25] Riemann-Hilbert problems in Clifford analysis
    Bernstein, S
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 1 - 8
  • [26] Asymptotic expansions for Riemann-Hilbert problems
    Qiu, W. -Y.
    Wong, R.
    ANALYSIS AND APPLICATIONS, 2008, 6 (03) : 269 - 298
  • [27] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Najafabadi, Amir T. Payandeh
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 533 - 547
  • [28] Schwarz, Riemann, Riemann-Hilbert Problems and Their Connections in Polydomains
    Mohammed, Alip
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 143 - 166
  • [29] Matrix Riemann-Hilbert problems and factorization on Riemann surfaces
    Camara, M. C.
    dos Santos, A. F.
    dos Santos, Pedro F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 228 - 254
  • [30] Numerical methods for Riemann-Hilbert problems in multiply connected circle domains
    Balu, R.
    DeLillo, T. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 307 : 248 - 261