An improved generalized finite-difference method is proposed in this paper, as an alternative meshless method to solve differential equations. The method establishes discrete equations by minimizing a global residual. A general frame for constructing difference schemes is first described. As one choice the moving least square method is used in this paper. Compared with other generalized finite-difference methods, the improved method yields a set of discrete equations having the favorable properties such as symmetric, positive definite and well conditioned. Compared with meshless methods based on a variational principle or a weak form, the method described in this paper does not need a numerical integration and thus provides an alternative way to avoid the difficulties in implementing a numerical integration. In the proposed method there is no such inconvenience in applying essential boundary conditions as commonly encountered in other meshless methods. Numerical examples show that the improved method has a high convergence rate and can produce accurate results even with a coarse mesh. (C) 2002 Elsevier Science B.V. All rights reserved.