Model identification for infinite variance autoregressive processes

被引:9
|
作者
Andrews, Beth [1 ]
Davis, Richard A. [2 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Akaike's information criterion; All-pass models; Autoregressive processes; Infinite variance; Noncausal; MAXIMUM-LIKELIHOOD-ESTIMATION; TIME-SERIES MODELS; ABSOLUTE DEVIATION ESTIMATION; MOVING AVERAGES; LIMIT THEORY; INFORMATION CRITERION; ORDER; SYSTEMS;
D O I
10.1016/j.jeconom.2012.08.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider model identification for infinite variance autoregressive time series processes. It is shown that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike's information criterion, and we use all-pass models to identify noncausal autoregressive processes and estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the unit circle in the complex plane). We examine the performance of the order selection procedures for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to stock market trading volume data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 234
页数:13
相关论文
共 50 条