Regularization and variable selection for infinite variance autoregressive models

被引:2
|
作者
Xu, Ganggang [1 ]
Xiang, Yanbiao [2 ]
Wang, Suojin [1 ]
Lin, Zhengyan [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Adaptive lasso; Autoregressive model; Infinite variance; Least absolute deviation; REGRESSION-MODELS; ADAPTIVE LASSO; TAIL; ASYMPTOTICS;
D O I
10.1016/j.jspi.2012.03.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Autoregressive models with infinite variance are of great importance in modeling heavy-tailed time series and have been well studied. In this paper, we propose a penalized method to conduct model selection for autoregressive models with innovations having Pareto-like distributions with index alpha is an element of E (0,2). By combining the least absolute deviation loss function and the adaptive lasso penalty, the proposed method is able to consistently identify the true model and at the same time produce efficient estimators with a convergence rate of n(-1/alpha). In addition, our approach provides a unified way to conduct variable selection for autoregressive models with finite or infinite variance. A simulation study and a real data analysis are conducted to illustrate the effectiveness of our method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2545 / 2553
页数:9
相关论文
共 50 条
  • [1] Efficient estimation and variable selection for infinite variance autoregressive models
    Tang, Linjun
    Zhou, Zhangong
    Wu, Changchun
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 40 (1-2) : 399 - 413
  • [2] Efficient estimation and variable selection for infinite variance autoregressive models
    Linjun Tang
    Zhangong Zhou
    Changchun Wu
    [J]. Journal of Applied Mathematics and Computing, 2012, 40 (1-2) : 399 - 413
  • [3] Empirical processes for infinite variance autoregressive models
    Bouhaddioui, Chafik
    Ghoudi, Kilani
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 319 - 335
  • [4] Regularization and selection in Gaussian mixture of autoregressive models
    Khalili, Abbas
    Chen, Jiahua
    Stephens, David A.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 356 - 374
  • [5] Inference for Spatial Autoregressive Models with Infinite Variance Noises
    Gui Li LIAO
    Qi Meng LIU
    Rong Mao ZHANG
    [J]. Acta Mathematica Sinica., 2020, 36 (12) - 1416
  • [6] Inference for Spatial Autoregressive Models with Infinite Variance Noises
    Gui Li Liao
    Qi Meng Liu
    Rong Mao Zhang
    [J]. Acta Mathematica Sinica, English Series, 2020, 36 : 1395 - 1416
  • [7] Inference for Spatial Autoregressive Models with Infinite Variance Noises
    Gui Li LIAO
    Qi Meng LIU
    Rong Mao ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2020, (12) : 1395 - 1416
  • [8] Inference for Spatial Autoregressive Models with Infinite Variance Noises
    Liao, Gui Li
    Liu, Qi Meng
    Zhang, Rong Mao
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (12) : 1395 - 1416
  • [9] Variable selection for spatial autoregressive models
    Xie, Li
    Wang, Xiaorui
    Cheng, Weihu
    Tang, Tian
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (06) : 1325 - 1340
  • [10] AUTOREGRESSIVE PROCESSES WITH INFINITE VARIANCE
    HANNAN, EJ
    KANTER, M
    [J]. JOURNAL OF APPLIED PROBABILITY, 1977, 14 (02) : 411 - 415