Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion

被引:4
|
作者
Juengel, Ansgar [1 ]
Leingang, Oliver [1 ]
Wang, Shu [2 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 奥地利科学基金会;
关键词
Keller-Segel model; Asymptotic analysis; Vanishing cross-diffusion limit; Entropy method; Higher-order estimates; Numerical simulations; PREVENTING BLOW-UP; GLOBAL EXISTENCE; CHEMOTAXIS; MODEL;
D O I
10.1016/j.na.2019.111698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Keller-Segel systems in two and three space dimensions with an additional cross-diffusion term in the equation for the chemical concentration are analyzed. The cross-diffusion term has a stabilizing effect and leads to the global-in-time existence of weak solutions. The limit of vanishing cross-diffusion parameter is proved rigorously in the parabolic-elliptic and parabolic-parabolic cases. When the signal production is sublinear, the existence of global-in-time weak solutions as well as the convergence of the solutions to those of the classical parabolic-elliptic Keller-Segel equations are proved. The proof is based on a reformulation of the equations eliminating the additional cross-diffusion term but making the equation for the cell density quasilinear. For superlinear signal production terms, convergence rates in the cross-diffusion parameter are proved for local-in-time smooth solutions (since finite-time blow up is possible). The proof is based on careful H-s(Omega) estimates and a variant of the Gronwall lemma. Numerical experiments in two space dimensions illustrate the theoretical results and quantify the shape of the cell aggregation bumps as a function of the cross-diffusion parameter. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Homogenization of degenerate cross-diffusion systems
    Jungel, Ansgar
    Ptashnyk, Mariya
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5543 - 5575
  • [42] NONLINEAR CROSS-DIFFUSION WITH SIZE EXCLUSION
    Burger, Martin
    Di Francesco, Marco
    Pietschmann, Jan-Frederik
    Schlake, Baebel
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2842 - 2871
  • [43] Spatial decay in a cross-diffusion problem
    Payne, L. E.
    Song, J. C.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (06) : 854 - 864
  • [44] CROSS-DIFFUSION SYSTEMS WITH ENTROPY STRUCTURE
    Juengel, Ansgar
    [J]. PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 181 - 190
  • [45] On epidemic models with nonlinear cross-diffusion
    Berres, S.
    Gonzalez-Marin, J.
    [J]. 20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 317 - 323
  • [46] PREFACE: ANALYSIS OF CROSS-DIFFUSION SYSTEMS
    Winkler, Michael
    Wrzosek, Dariusz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : I - I
  • [47] Bifurcation of Reaction Cross-Diffusion Systems
    Zou, Rong
    Guo, Shangjiang
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04):
  • [48] Chemotactic cross-diffusion in complex frameworks
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11): : 2035 - 2040
  • [49] SPATIAL PATTERN IN AN EPIDEMIC SYSTEM WITH CROSS-DIFFUSION OF THE SUSCEPTIBLE
    Sun, Gui-Quan
    Jin, Zhen
    Liu, Quan-Xing
    Li, Li
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2009, 17 (01) : 141 - 152
  • [50] Cross-diffusion in a colloid-polymer aqueous system
    McAfee, Michele S.
    Annunziata, Onofrio
    [J]. FLUID PHASE EQUILIBRIA, 2013, 356 : 46 - 55