Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review

被引:35
|
作者
Beliaev, Leonid Yu. [1 ]
Takayama, Osamu [1 ]
Melentiev, Pavel N. [2 ,3 ]
V. Lavrinenko, Andrei [1 ]
机构
[1] Tech Univ Denmark, DTU Foton Dept Photon Engn, Orsteds Plads 343, DK-2800 Lyngby, Denmark
[2] RAS, Inst Spect, Moscow 108840, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia
关键词
fluorescence; metamaterials; metasurfaces; Purcell effect; nanophotonics; hyperbolic metamaterials; NITROGEN-VACANCY CENTERS; SINGLE-PHOTON EMISSION; GIANT ENHANCEMENT; SURFACE-WAVES; NEGATIVE REFRACTION; PLASMON-POLARITONS; EXCEPTIONAL POINTS; ENERGY-TRANSFER; QUANTUM DOTS; FLUORESCENCE;
D O I
10.29026/oea.2021.210031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoluminescence including fluorescence plays a great role in a wide variety of applications from biomedical sensing and imaging to optoelectronics. Therefore, the enhancement and control of photoluminescence has immense impact on both fundamental scientific research and aforementioned applications. Among various nanophotonic schemes and nano-structures to enhance the photoluminescence, we focus on a certain type of nanostructures, hyperbolic metamaterials (HMMs). HMMs are highly anisotropic metamaterials, which produce intense localized electric fields. Therefore, HMMs naturally boost photoluminescence from dye molecules, quantum dots, nitrogen-vacancy centers in diamonds, per-ovskites and transition metal dichalcogenides. We provide an overview of various configurations of HMMs, including met-al-dielectric multilayers, trenches, metallic nanowires, and cavity structures fabricated with the use of noble metals, trans-parent conductive oxides, and refractory metals as plasmonic elements. We also discuss lasing action realized with HMMs.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Review: recent progress in metal-less metasurfaces and metamaterials
    Desouky, Mai
    Abdelsalam, Mostafa
    Swillam, M. A.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (05):
  • [22] Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices
    Jung, Joonkyo
    Park, Hyeonjin
    Park, Junhyung
    Chang, Taeyong
    Shin, Jonghwa
    [J]. NANOPHOTONICS, 2020, 9 (10) : 3165 - 3196
  • [23] Review: recent progress in metal-less metasurfaces and metamaterials
    Mai Desouky
    Mostafa Abdelsalam
    M. A. Swillam
    [J]. Applied Physics A, 2019, 125
  • [24] Hyperbolic metamaterials
    Poddubny, Alexander
    Iorsh, Ivan
    Belov, Pavel
    Kivshar, Yuri
    [J]. NATURE PHOTONICS, 2013, 7 (12) : 948 - 957
  • [25] Hyperbolic metamaterials
    Alexander Poddubny
    Ivan Iorsh
    Pavel Belov
    Yuri Kivshar
    [J]. Nature Photonics, 2013, 7 : 948 - 957
  • [26] Hyperbolic Metamaterials
    Narimanov, Evgenii E.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [27] Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials
    Tumkur, T. U.
    Kitur, J. K.
    Chu, B.
    Gu, Lei
    Podolskiy, V. A.
    Narimanov, E. E.
    Noginov, M. A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (09)
  • [28] Control of spontaneous emission with functionalized multilayered hyperbolic metamaterials
    Tumkur, T.
    Zhu, G.
    Black, P.
    Barnakov, Yu A.
    Bonner, C. E.
    Noginov, M. A.
    [J]. METAMATERIALS: FUNDAMENTALS AND APPLICATIONS IV, 2011, 8093
  • [29] Extraction and control of permittivity of hyperbolic metamaterials with optical nonlocality
    Xin, Jian
    Zong, Jie
    Gao, Junhua
    Wang, Yuxiao
    Song, Yinglin
    Zhang, Xueru
    [J]. OPTICS EXPRESS, 2021, 29 (12) : 18572 - 18586
  • [30] Luminescent hyperbolic metasurfaces
    Smalley, J. S. T.
    Vallini, F.
    Montoya, S. A.
    Ferrari, L.
    Shahin, S.
    Riley, C. T.
    Kante, B.
    Fullerton, E. E.
    Liu, Z.
    Fainman, Y.
    [J]. NATURE COMMUNICATIONS, 2017, 8