A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

被引:22
|
作者
Ye, Zhuan [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Boussinesq equations; fractional Laplacian; global regularity; LIFE-SPAN; REGULARITY; CRITERION; EULER;
D O I
10.1016/S0252-9602(14)60144-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to consider the global well-posedness to n-dimensional (n >= 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solution to the Boussinesq equations provided the real parameter a satisfies alpha >= 1/2 + n/4.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
  • [31] Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation
    Hmidi, Taoufik
    Keraani, Sahbi
    Rousset, Frederic
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) : 2147 - 2174
  • [32] Global well-posedness and decay estimates of strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection
    Zhong, Xin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) : 1543 - 1567
  • [33] GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS
    Xu, Bo
    Zhou, Jiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4821 - 4829
  • [34] On the global well-posedness of a generalized 2D Boussinesq equations
    Junxiong Jia
    Jigen Peng
    Kexue Li
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 911 - 945
  • [35] On the global well-posedness of a generalized 2D Boussinesq equations
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 911 - 945
  • [36] Global well-posedness for strongly damped multidimensional generalized Boussinesq equations
    Shen Jihong
    Zhang Mingyou
    Wang Xingchang
    Liu Bowei
    Xu Runzhang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4437 - 4450
  • [37] Global well-posedness and optimal decay for incompressible MHD equations with fractional dissipation and magnetic diffusion
    Jin, Meilin
    Jiu, Quansen
    Xie, Yaowei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [38] Global well-posedness and stability of the 2D Boussinesq equations with partial dissipation near a hydrostatic equilibrium
    Kang, Kyungkeun
    Lee, Jihoon
    Nguyen, Dinh Duong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 393 : 1 - 57
  • [39] Global well-posedness for the 2D Euler-Boussinesq-Bénard equations with critical dissipation
    Ye, Zhuan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 392 : 209 - 254
  • [40] Well-posedness of equations with fractional derivative
    Bu, Shang Quan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) : 1223 - 1232