On the Exponential Diophantine Equation x2+4n = y13

被引:0
|
作者
Ran, Yanping [1 ]
机构
[1] Tianshui Normal Univ, Sch Math & Stat, Tianshui 741000, Gansu, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we studied the Diophantine equation x(2) + 4(n) = y(13). By using the elementary method and algebraic number theory, we obtain the following conclusions: (i) Let x be an odd number, one necessary condition which the equation has integer solutions is that 2(12n)-1/13 contains some square factors. (ii) Let x be an even number, when (n equivalent to 0(mod13)), that is n = 13k (k >= 1), all integer solutions for the equation are (x, y) = (0, 4(k)); when (n equivalent to 6(mod13)), that is n = 13k + 6 (k >= 0), all integer solutions are (x, y) = (+/- 2(13k+6),2(2k+1)); when n equivalent to 1, 2, 3, 4, 5, 7, 8, 9,10, 11, 12(mod 13) the equation has no integer solution.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 50 条
  • [31] ON THE DIOPHANTINE EQUATION D(1)X(2)+D-2(M)=4Y(N)
    LE, MH
    MONATSHEFTE FUR MATHEMATIK, 1995, 120 (02): : 121 - 125
  • [32] Nonlinear Diophantine equation 11x+13y = z2
    Sugandha, A.
    Tripena, A.
    Prabowo, A.
    Sukono, F.
    INDONESIAN OPERATIONS RESEARCH ASSOCIATION - INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH 2017, 2018, 332
  • [33] Solving the Diophantine equation y2 = x(x2 - n2)
    Draziotis, Konstantinos
    Poulakis, Dimitrios
    JOURNAL OF NUMBER THEORY, 2009, 129 (01) : 102 - 121
  • [34] On the diophantine equation 2(a)X(4)+2(b)Y(4)=2(c)Z(4)
    Suzuki, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (04) : 92 - 94
  • [35] The diophantine equation x4+y4=z2 in Q(√-2)
    Szabó, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (09): : 857 - 861
  • [36] On the exponential Diophantine equation (q2l-p2k/2 n)x
    Feng, Cheng
    Luo, Jiagui
    AIMS MATHEMATICS, 2022, 7 (05): : 8609 - 8621
  • [37] SOLVABILITY OF THE DIOPHANTINE EQUATION X4+KX2Y2+Y4=Z2
    ZHENG, DX
    KEXUE TONGBAO, 1988, 33 (09): : 712 - 714
  • [38] A NOTE ON THE DIOPHANTINE EQUATION X(2)+4D=Y(P)
    LE, MH
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (3-4): : 283 - 285
  • [39] DIOPHANTINE EQUATION 3X4-2Y3=1
    BUMBY, RT
    MATHEMATICA SCANDINAVICA, 1967, 21 (01) : 144 - &
  • [40] ON THE DIOPHANTINE EQUATION X(2)-D=4P(N)
    LEMAOHUA
    JOURNAL OF NUMBER THEORY, 1992, 41 (03) : 257 - 271