Energy norm based a posteriori error estimation for boundary element methods in two dimensions

被引:27
|
作者
Erath, C. [2 ]
Ferraz-Leite, S. [1 ]
Funken, S. [2 ]
Praetorius, D. [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Ulm, Inst Numer Math, D-89069 Ulm, Germany
基金
奥地利科学基金会;
关键词
Integral equations; Boundary element method; A posteriori error estimate; Adaptive algorithm; Averaging error estimator; ARONSZAJN-SLOBODECKIJ NORM; 2-LEVEL METHODS; PART II; LOCALIZATION; ELASTICITY; EXTERIOR; FINITE;
D O I
10.1016/j.apnum.2008.12.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. We analyze the mathematical relation between the h-h/2-error estimator from IS. Ferraz-Leite, D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008) 135-162], the two-level error estimator from IS. Funken, Schnelle Losungsverfahren for FEM-BEM Kopplungsgleichungen, Ph.D. thesis, University of Hannover, 1996 (in German); R Mund, E. Stephan, J. Weisse, Two-level methods for the single layer potential in R-3, Computing 60 (1998) 243-266], and the averaging error estimator from [C. Carstensen, D. Praetorius, Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind, SIAM J. Sci. Comput. 27 (2006) 1226-1260]. We essentially show that all of these are equivalent, and we extend the analysis of IS. Funken, Schnelle Losungsverfahren fur FEM-BEM Kopplungsgleichungen. Ph.D. thesis, University of Hannover, 1996 (in German); P. Mund, E. Stephan, J. Weisse, Two-level methods for the single layer potential in R-3, Computing 60 (1998) 243-266] to cover adaptive mesh-refinement. Therefore, all error estimators give lower bounds for the Galerkin error, whereas upper bounds depend crucially on the saturation assumption. As model examples, we consider first-kind integral equations in 2D with weakly singular integral kernel. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2713 / 2734
页数:22
相关论文
共 50 条
  • [1] Energy norm a posteriori error estimation for discontinuous Galerkin methods
    Becker, R
    Hansbo, P
    Larson, MG
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) : 723 - 733
  • [2] A POSTERIORI ERROR ESTIMATION FOR THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHODS
    RENCIS, JJ
    UREKEW, TJ
    JONG, KY
    KIRK, R
    FEDERICO, P
    [J]. COMPUTERS & STRUCTURES, 1990, 37 (01) : 103 - 117
  • [3] A POSTERIORI ERROR ESTIMATION FOR ADAPTIVE IGA BOUNDARY ELEMENT METHODS
    Feischl, Michael
    Gantner, Gregor
    Praetorius, Dirk
    [J]. 11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 2421 - 2432
  • [4] Energy norm a posteriori error estimates for mixed finite element methods
    Lovadina, Carlo
    Stenberg, Rolf
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1659 - 1674
  • [5] A posteriori boundary element error estimation
    Jou, J
    Liu, JL
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (01) : 1 - 19
  • [6] ENERGY NORM A POSTERIORI ERROR ESTIMATION FOR hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS IN THREE DIMENSIONS
    Zhu, Liang
    Giani, Stefano
    Houston, Paul
    Schoetzau, Dominik
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (02): : 267 - 306
  • [7] Adaptive variational multiscale methods based on a posteriori error estimation:: Energy norm estimates for elliptic problems
    Larson, Mats G.
    Malqvist, Axel
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (21-24) : 2313 - 2324
  • [8] Local a posteriori error estimates for boundary element methods
    Schulz, H
    Wendland, WL
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 564 - 571
  • [9] Functional a posteriori error estimates for boundary element methods
    Stefan Kurz
    Dirk Pauly
    Dirk Praetorius
    Sergey Repin
    Daniel Sebastian
    [J]. Numerische Mathematik, 2021, 147 : 937 - 966
  • [10] Functional a posteriori error estimates for boundary element methods
    Kurz, Stefan
    Pauly, Dirk
    Praetorius, Dirk
    Repin, Sergey
    Sebastian, Daniel
    [J]. NUMERISCHE MATHEMATIK, 2021, 147 (04) : 937 - 966