Efficient depth selection for the implementation of noisy quantum approximate optimization algorithm

被引:2
|
作者
Pan, Yu [1 ]
Tong, Yifan [2 ]
Xue, Shibei [3 ]
Zhang, Guofeng [4 ,5 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
[3] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Minist Educ China, Dept Automat, Shanghai 200240, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1016/j.jfranklin.2022.10.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Noise on near-term quantum devices will inevitably limit the performance of Quantum Approximate Optimization Algorithm (QAOA). One significant consequence is that the performance of QAOA may fail to monotonically improve with control depth. In principle, optimal depth can be found at a certain point where the noise effects just outweigh the benefits brought by increasing the depth. In this work, we propose to use the regularized model selection algorithm to identify the optimal depth with just a few iterations of regularization parameters. Numerical experiments show that the algorithm can efficiently locate the optimal depth under relaxation and dephasing noises. (c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11273 / 11287
页数:15
相关论文
共 50 条
  • [31] Entanglement perspective on the quantum approximate optimization algorithm
    Dupont, Maxime
    Didier, Nicolas
    Hodson, Mark J.
    Moore, Joel E.
    Reagor, Matthew J.
    [J]. PHYSICAL REVIEW A, 2022, 106 (02)
  • [32] Quantum approximate optimization algorithm for qudit systems
    Deller, Yannick
    Schmitt, Sebastian
    Lewenstein, Maciej
    Lenk, Steve
    Federer, Marika
    Jendrzejewski, Fred
    Hauke, Philipp
    Kasper, Valentin
    [J]. PHYSICAL REVIEW A, 2023, 107 (06)
  • [33] Channel Decoding with Quantum Approximate Optimization Algorithm
    Matsumine, Toshiki
    Koike-Akino, Toshiaki
    Wang, Ye
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2574 - 2578
  • [34] Quantum dropout: On and over the hardness of quantum approximate optimization algorithm
    Wang, Zhenduo
    Zheng, Pei-Lin
    Wu, Biao
    Zhang, Yi
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [35] Depth scaling of unstructured search via quantum approximate optimization
    Campos, Ernesto
    Rabinovich, Daniil
    Uvarov, Alexey
    [J]. PHYSICAL REVIEW A, 2024, 110 (01)
  • [36] Iterative layerwise training for the quantum approximate optimization algorithm
    Lee, Xinwei
    Yan, Xinjian
    Xie, Ningyi
    Cai, Dongsheng
    Saito, Yoshiyuki
    Asai, Nobuyoshi
    [J]. PHYSICAL REVIEW A, 2024, 109 (05)
  • [37] Evaluating Quantum Approximate Optimization Algorithm: A Case Study
    Shaydulin, Ruslan
    Alexeev, Yuri
    [J]. 2019 TENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2019,
  • [38] Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm
    Fuchs, Franz Georg
    Lye, Kjetil Olsen
    Moll Nilsen, Halvor
    Stasik, Alexander Johannes
    Sartor, Giorgio
    [J]. ALGORITHMS, 2022, 15 (06)
  • [39] Classical variational simulation of the Quantum Approximate Optimization Algorithm
    Matija Medvidović
    Giuseppe Carleo
    [J]. npj Quantum Information, 7
  • [40] Quantum approximate optimization algorithm for MaxCut: A fermionic view
    Wang, Zhihui
    Hadfield, Stuart
    Jiang, Zhang
    Rieffel, Eleanor G.
    [J]. PHYSICAL REVIEW A, 2018, 97 (02)