Efficient depth selection for the implementation of noisy quantum approximate optimization algorithm

被引:2
|
作者
Pan, Yu [1 ]
Tong, Yifan [2 ]
Xue, Shibei [3 ]
Zhang, Guofeng [4 ,5 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
[3] Shanghai Jiao Tong Univ, Key Lab Syst Control & Informat Proc, Minist Educ China, Dept Automat, Shanghai 200240, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1016/j.jfranklin.2022.10.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Noise on near-term quantum devices will inevitably limit the performance of Quantum Approximate Optimization Algorithm (QAOA). One significant consequence is that the performance of QAOA may fail to monotonically improve with control depth. In principle, optimal depth can be found at a certain point where the noise effects just outweigh the benefits brought by increasing the depth. In this work, we propose to use the regularized model selection algorithm to identify the optimal depth with just a few iterations of regularization parameters. Numerical experiments show that the algorithm can efficiently locate the optimal depth under relaxation and dephasing noises. (c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11273 / 11287
页数:15
相关论文
共 50 条
  • [1] Automatic depth optimization for a quantum approximate optimization algorithm
    Pan, Yu
    Tong, Yifan
    Yang, Yi
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [2] Lower bounds on circuit depth of the quantum approximate optimization algorithm
    Herrman, Rebekah
    Ostrowski, James
    Humble, Travis S.
    Siopsis, George
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (02)
  • [3] Lower bounds on circuit depth of the quantum approximate optimization algorithm
    Rebekah Herrman
    James Ostrowski
    Travis S. Humble
    George Siopsis
    [J]. Quantum Information Processing, 2021, 20
  • [4] A Depth-Progressive Initialization Strategy for Quantum Approximate Optimization Algorithm
    Lee, Xinwei
    Xie, Ningyi
    Cai, Dongsheng
    Saito, Yoshiyuki
    Asai, Nobuyoshi
    [J]. MATHEMATICS, 2023, 11 (09)
  • [5] An Efficient Circuit Compilation Flow for Quantum Approximate Optimization Algorithm
    Alam, Mahabubul
    Ash-Saki, Abdullah
    Ghosh, Swaroop
    [J]. PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [6] Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm
    Bengtsson, Andreas
    Vikstal, Pontus
    Warren, Christopher
    Svensson, Marika
    Gu, Xiu
    Kockum, Anton Frisk
    Krantz, Philip
    Krizan, Christian
    Shiri, Daryoush
    Svensson, Ida-Maria
    Tancredi, Giovanna
    Johansson, Goran
    Delsing, Per
    Ferrini, Giulia
    Bylander, Jonas
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (03):
  • [7] Circuit depth scaling for quantum approximate optimization
    Akshay, V.
    Philathong, H.
    Campos, E.
    Rabinovich, D.
    Zacharov, I.
    Zhang, Xiao-Ming
    Biamonte, J. D.
    [J]. PHYSICAL REVIEW A, 2022, 106 (04)
  • [8] Energy-Efficient Cluster Head Selection via Quantum Approximate Optimization
    Choi, Jaeho
    Oh, Seunghyeok
    Kim, Joongheon
    [J]. ELECTRONICS, 2020, 9 (10) : 1 - 16
  • [9] Implementing Graph-Theoretic Feature Selection by Quantum Approximate Optimization Algorithm
    Li, YaoChong
    Zhou, Ri-Gui
    Xu, RuiQing
    Luo, Jia
    Hu, WenWen
    Fan, Ping
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2364 - 2377
  • [10] Shortcuts to the quantum approximate optimization algorithm
    Chai, Yahui
    Han, Yong-Jian
    Wu, Yu-Chun
    Li, Ye
    Dou, Menghan
    Guo, Guo-Ping
    [J]. PHYSICAL REVIEW A, 2022, 105 (04)