Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors

被引:18
|
作者
Yin, Anxiang [1 ]
He, Qiyuan [1 ]
Lin, Zhaoyang [1 ]
Luo, Liang [1 ]
Liu, Yuan [2 ]
Yang, Sen [2 ]
Wu, Hao [2 ]
Ding, Mengning [2 ]
Huang, Yu [2 ,3 ]
Duan, Xiangfeng [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
关键词
gold nanorods; nonlinear optical materials; polyanilines; surface plasmon resonance; voltage sensors; GOLD NANOPARTICLES; HOLE ARRAYS; LIGHT; CONVERSION; SHAPE; TRANSMISSION; SOLAR; SIZE;
D O I
10.1002/anie.201508586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we report the design and synthesis of plasmonic/non-linear optical (NLO) material core/shell nanostructures that can allow dynamic manipulation of light signals using an external electrical field and enable a new generation of nanoscale optical voltage sensors. We show that gold nanorods (Au NRs) can be synthesized with tunable plasmonic properties and function as the nucleation seeds for continued growth of a shell of NLO materials (such as polyaniline, PANI) with variable thickness. The formation of a PANI nanoshell allows dynamic modulation of the dielectric environment of the plasmonic Au NRs, and therefore the plasmonic resonance characteristics, by an external electrical field. The finite element simulation confirms that such modulation is originated from the field-induced modulation of the dielectric constant of the NLO shell. This approach is general, and the coating of the Au NRs with other NLO materials (such as barium titanate, BTO) is found to produce a similar effect. These findings can not only open a new pathway to active modulation of plasmonic resonance at the sub-wavelength scale but also enable the creation of a new generation of nanoscale optical voltage sensors (NOVS).
引用
收藏
页码:583 / 587
页数:5
相关论文
共 50 条
  • [21] Nanoscale Surface Plasmon All-Optical Diode Based on Plasmonic Slot Waveguides
    Xiaoyong Hu
    Yingbo Zhang
    Xinan Xu
    Qihuang Gong
    Plasmonics, 2011, 6 : 619 - 624
  • [22] Optical and Thermal Enhancement of Plasmonic Nanofluid Based on Core/Shell Nanoparticles
    Huiling Duan
    Liangliang Tang
    Yuan Zheng
    Ping Zhang
    Plasmonics, 2018, 13 : 1135 - 1141
  • [23] Optical and Thermal Enhancement of Plasmonic Nanofluid Based on Core/Shell Nanoparticles
    Duan, Huiling
    Tang, Liangliang
    Zheng, Yuan
    Zhang, Ping
    PLASMONICS, 2018, 13 (04) : 1135 - 1141
  • [24] Optical heating and sensing with plasmonic gold shell and phosphorescent core nanoparticle
    Sudheendra, L.
    Kennedy, I. M.
    REPORTERS, MARKERS, DYES, NANOPARTICLES, AND MOLECULAR PROBES FOR BIOMEDICAL APPLICATIONS III, 2011, 7910
  • [25] Optical properties of hybrid plasmonic nanofluid based on core/shell nanoparticles
    Duan, Huiling
    Tang, Liangliang
    Zheng, Yuan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 91 : 88 - 92
  • [26] Synthesis and optical absorption of Ag/CdS core/shell plasmonic nanostructure
    Duan, Huiling
    Xuan, Yimin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 121 : 8 - 13
  • [27] Optical Forces and Torques on Eccentric Nanoscale Core-Shell Particles
    Sun, Qiang
    Dholakia, Kishan
    Greentree, Andrew D.
    ACS PHOTONICS, 2021, 8 (04) : 1103 - 1111
  • [28] Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators
    Sun, Xu
    Dai, Daoxin
    Thylen, Lars
    Wosinski, Lech
    PHOTONICS, 2015, 2 (04): : 1116 - 1130
  • [29] Nonlinear optical theory and figure of merit of surface plasmon resonance of gold nanorods
    Lin, Jui-Teng
    JOURNAL OF NANOPHOTONICS, 2011, 5
  • [30] Technology of suspended core microstructured optical fibers for evanesced wave and plasmon resonance optical fiber sensors
    Wojcik, Jan
    Mergo, Pawel
    Makara, Mariusz
    Poturaj, Krzysztof
    Czyzewska, Lidia
    Klimek, Jacek
    Walewski, Aleksander
    PHOTONIC CRYSTAL FIBERS II, 2008, 6990