Greenhouse gas emissions intensity of global croplands

被引:0
|
作者
Carlson, Kimberly M. [1 ,2 ]
Gerber, James S. [1 ]
Mueller, Nathaniel D. [3 ,4 ]
Herrero, Mario [5 ]
MacDonald, Graham K. [1 ,6 ]
Brauman, Kate A. [1 ]
Havlik, Petr [7 ]
O'Connell, Christine S. [1 ,8 ]
Johnson, Justin A. [1 ]
Saatchi, Sassan [9 ]
West, Paul C. [1 ]
机构
[1] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA
[2] Univ Hawaii, Dept Nat Resources & Environm Management, Honolulu, HI 96822 USA
[3] Harvard Univ, Dept Earth & Planetary Sci, Harvard, MA 02138 USA
[4] Harvard Univ, Dept Organism & Evolutionary Biol, Harvard, MA 02138 USA
[5] CSIRO, St Lucia, Qld, Australia
[6] McGill Univ, Dept Geog, Montreal, PQ H3A 0B9, Canada
[7] Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, Laxenburg, Austria
[8] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[9] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
NITROUS-OXIDE; METHANE EMISSION; N2O EMISSIONS; SUSTAINABLE INTENSIFICATION; AGRONOMIC ASSESSMENT; FLOODED RICE; LAND-USE; CLIMATE; YIELD; CARBON;
D O I
10.1038/NCLIMATE3158
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Stabilizing greenhouse gas (GHG) emissions fromcroplands as agricultural demand grows is a critical component of climate change mitigation(1-3). Emissions intensity metrics-including carbon dioxide equivalent emissions per kilocalorie produced ('production intensity')-can highlight regions, management practices, and crops as potential foci for mitigation(4-7). Yet the spatial and crop-wise distribution of emissions intensity has been uncertain. Here, we develop global crop-specific circa 2000 estimates of GHG emissions and GHG intensity in high spatial detail, reporting the effects of rice paddy management, peatland draining, and nitrogen (N) fertilizer on CH4, CO2 and N-2O emissions. Global mean production intensity is 0.16 Mg CO(2)e M kcal(-1), yet certain cropping practices contribute disproportionately to emissions. Peatland drainage (3.7 Mg CO(2)e M kcal(-1))-concentrated in Europe and Indonesia-accounts for 32% of these cropland emissions despite peatlands producing just 1.1% of total crop kilocalories. Methane emissions fromrice (0.58 Mg CO(2)e M kcal(-1)), a crucial food staple supplying 15% of total crop kilocalories, contribute 48% of cropland emissions, with outsized production intensity in Vietnam. In contrast, N2O emissions from N fertilizer application (0.033 Mg CO(2)e M kcal(-1)) generate only 20% of cropland emissions. We find that current total GHG emissions are largely unrelated to production intensity across crops and countries. Climate mitigation policies should therefore be directed to locations where crops have both high emissions and high intensities.
引用
收藏
页码:63 / +
页数:9
相关论文
共 50 条
  • [1] Greenhouse gas emissions intensity of global croplands
    Carlson K.M.
    Gerber J.S.
    Mueller N.D.
    Herrero M.
    MacDonald G.K.
    Brauman K.A.
    Havlik P.
    O'Connell C.S.
    Johnson J.A.
    Saatchi S.
    West P.C.
    [J]. Nature Climate Change, 2017, 7 (1) : 63 - 68
  • [2] Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation
    Zhang, Jingting
    Tian, Hanqin
    Shi, Hao
    Zhang, Jingfang
    Wang, Xiaoke
    Pan, Shufen
    Yang, Jia
    [J]. GLOBAL CHANGE BIOLOGY, 2020, 26 (11) : 6116 - 6133
  • [3] Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland
    Maljanen, Marja
    Hytonen, Jyrki
    Makiranta, Paivi
    Alm, Jukka
    Minkkinen, Kari
    Laine, Jukka
    Martikainen, Pertti J.
    [J]. BOREAL ENVIRONMENT RESEARCH, 2007, 12 (02): : 133 - 140
  • [4] GREENHOUSE GAS EMISSIONS AS A GLOBAL PROBLEM OF NOWADAYS
    Vojtekova, Maria
    Blazekova, Ol'ga
    [J]. GLOBALIZATION AND ITS SOCIO-ECONOMIC CONSEQUENCES, PTS I - VI, 2017, : 2888 - 2894
  • [5] Global and regional greenhouse gas emissions scenarios
    Kram, T
    Morita, T
    Riahi, K
    Roehrl, RA
    Van Rooijen, S
    Sankovski, A
    De Vries, B
    [J]. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2000, 63 (2-3) : 335 - 371
  • [6] Greenhouse Gas Emissions from Global Cities
    Kennedy, Christopher
    Steinberger, Julia
    Gasson, Barrie
    Hansen, Yvonne
    Hillman, Timothy
    Havranek, Miroslav
    Pataki, Diane
    Phdungsilp, Aumnad
    Ramaswami, Anu
    Villalba Mendez, Gara
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (19) : 7297 - 7302
  • [7] Drivers of the Growth in Global Greenhouse Gas Emissions
    Arto, Inaki
    Dietzenbacher, Erik
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (10) : 5388 - 5394
  • [8] Agricultural subsidies and global greenhouse gas emissions
    Laborde, David
    Mamun, Abdullah
    Martin, Will
    Pineiro, Valeria
    Vos, Rob
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Energy and greenhouse gas emissions: A global perspective
    Balat, Mustafa
    [J]. ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2006, 1 (02): : 157 - 170
  • [10] Agricultural subsidies and global greenhouse gas emissions
    David Laborde
    Abdullah Mamun
    Will Martin
    Valeria Piñeiro
    Rob Vos
    [J]. Nature Communications, 12