A filtered Henon map

被引:4
|
作者
Borges, Vinicius S. [1 ]
Eisencraft, Marcio [1 ]
机构
[1] Univ Sao Paulo, Telecommun & Control Engn Dept, Escola Politecn, Sao Paulo, Brazil
关键词
Dynamical systems; Discrete-time filters; Lyapunov exponents; Chaos-based communication; CHAOTIC SYNCHRONIZATION; IMAGE ENCRYPTION; PARAMETER SPACE; SYSTEMS;
D O I
10.1016/j.chaos.2022.112865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use Lyapunov exponents to analyze how the dynamical properties of the Henon map change as a function of the coefficients of a linear filter inserted in its feedback loop. We show that the generated orbits can be chaotic or not, depending on the filter coefficients. The dynamics of the system presents complex behavior, including cascades of bifurcations, coexistence of attractors, crises, and "shrimps". The obtained results are relevant in the context of bandlimited chaos-based communication systems, that have recently been proposed in the literature.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Complete Bifurcation Behaviors of a Henon Map
    Luo, Albert C. J.
    Guo, Yu
    DYNAMICAL SYSTEMS: DISCONTINUITY, STOCHASTICITY AND TIME-DELAY, 2010, : 37 - 47
  • [32] Stokes geometry for the quantum Henon map
    Shudo, Akira
    Ikeda, Kensuke S.
    NONLINEARITY, 2008, 21 (08) : 1831 - 1880
  • [33] The nonwandering set of some Henon map
    Cao, YL
    CHINESE SCIENCE BULLETIN, 1999, 44 (07): : 590 - 594
  • [34] On estimated for dimension of attractors of the Henon map
    Bojchenko, V.A.
    Leonov, G.A.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2000, (03): : 8 - 13
  • [35] STRUCTURE OF THE PARAMETER SPACE OF THE HENON MAP
    GALLAS, JAC
    PHYSICAL REVIEW LETTERS, 1993, 70 (18) : 2714 - 2717
  • [36] EXISTENCE OF A HOMOCLINIC POINT FOR THE HENON MAP
    MISIUREWICZ, M
    SZEWC, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) : 285 - 291
  • [37] On computing Poincare map by Henon method
    Palaniyandi, P.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (04) : 1877 - 1882
  • [38] A suspension of the Henon map by periodic orbits
    Starrett, John
    Nicholas, Craig
    CHAOS SOLITONS & FRACTALS, 2012, 45 (12) : 1486 - 1493
  • [39] Arithmetical signatures of the dynamics of the Henon map
    Endler, AN
    Gallas, JAC
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036231
  • [40] Gradient control of Henon map dynamics
    Guzenko, PY
    Fradkov, AL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03): : 701 - 705