Asymmetric Generalized Gaussian Distribution Parameters Estimation based on Maximum Likelihood, Moments and Entropy

被引:0
|
作者
Nacereddine, Nafaa [1 ]
Goumeidane, Aicha Baya [1 ]
机构
[1] Res Ctr Ind Technol, POB 64, Algiers 16014, Algeria
关键词
Asymmetric generalized Gaussian distribution; Parameter estimation; Maximum likelihood; Moments; Entropy;
D O I
10.1109/iccp48234.2019.8959693
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of estimating the parameters of Asymmetric Generalized Gaussian Distribution (AGGD) using three estimation mehods, namely, Maximum Likelihood Estimation (NILE), Moment Matching Estimation (MIME) and Entropy Matching Estimaion (EME). For this purpose, these methods are applied on an unimodal histogram fitting of an image corrupted with AGGD noise. Experiments show that the effectiveness of each method comparatively to the other one depends on the variation range of the shape factor.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条