ASYMPTOTIC BEHAVIOR OF BV FUNCTIONS AND SETS OF FINITE PERIMETER IN METRIC MEASURE SPACES

被引:3
|
作者
Eriksson-Bique, Sylvester [1 ]
Gill, James T. [2 ]
Lahti, Panu [3 ]
Shanmugalingam, Nageswari [4 ]
机构
[1] Res Unit Math Sci, POB 3000, FI-90014 Oulu, Finland
[2] St Louis Univ, Dept Math & Stat, Ritter Hall 307,220 N Grand Blvd, St Louis, MO 63103 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Cincinnati, Dept Math Sci, POB 210025, Cincinnati, OH 45221 USA
关键词
Bounded variation; finite perimeter; asymptotic limit; doubling measure; Poincare inequality; least gradient function; BOUNDED VARIATION; DIRICHLET PROBLEM;
D O I
10.1090/tran/8495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the asymptotic behavior of BV functions in complete metric measure spaces equipped with a doubling measure supporting a 1-Poincare inequality. We show that at almost every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a set E of finite perimeter, there is an asymptotic limit set (E)(infinity) corresponding to the asymptotic expansion of E and that every such asymptotic limit (E)(infinity) is a quasiminimal set of finite perimeter. We also show that the perimeter measure of (E)(infinity) is Ahlfors co-dimension 1 regular.
引用
收藏
页码:8201 / 8247
页数:47
相关论文
共 50 条
  • [41] BV Functions with Respect to a Measure and Relaxation of Metric Integral Functionals
    Bellettini, Giovanni
    Bouchitte, Guy
    Fragala, Ilaria
    JOURNAL OF CONVEX ANALYSIS, 1999, 6 (02) : 349 - 366
  • [42] Asymptotic mean value Laplacian in metric measure spaces
    Minne, Andreas
    Tewodrose, David
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [43] AN ASYMPTOTIC EXTENSION OF MORAN CONSTRUCTION IN METRIC MEASURE SPACES
    Wu, Daruhan
    TSUKUBA JOURNAL OF MATHEMATICS, 2016, 39 (02) : 167 - 179
  • [44] Fine properties and a notion of quasicontinuity for BV functions on metric spaces
    Lahti, Panu
    Shanmugalingam, Nageswari
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (02): : 150 - 182
  • [45] Differentiability of Lipschitz Functions on Metric Measure Spaces
    J. Cheeger
    Geometric & Functional Analysis GAFA, 1999, 9 : 428 - 517
  • [46] Differentiability of Lipschitz functions on metric measure spaces
    Cheeger, J
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 428 - 517
  • [47] Fractional Maximal Functions in Metric Measure Spaces
    Heikkinen, Toni
    Lehrback, Juha
    Nuutinen, Juho
    Tuominen, Heli
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 : 147 - 162
  • [48] Equivalent definitions of BV space and of total variation on metric measure spaces
    Ambrosio, Luigi
    Di Marino, Simone
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) : 4150 - 4188
  • [49] Relative isoperimetric inequalities and sufficient conditions for finite perimeter on metric spaces
    Korte, Riikka
    Lahti, Panu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 129 - 154
  • [50] Modulus of Families of Sets of Finite Perimeter and Quasiconformal Maps Between Metric Spaces of Globally Q-bounded Geometry
    Jones, Rebekah
    Lahti, Panu
    Shanmugalingam, Nageswari
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (01) : 265 - 294