Elementary vortex filament model of the discrete nonlinear Schrodinger equation

被引:2
|
作者
Nakayama, Kazuaki [1 ]
机构
[1] Shinshu Univ, Fac Sci, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
关键词
discretization; vortex filament; local induction approximation; discrete nonlinear Schrodinger equation;
D O I
10.1143/JPSJ.76.074003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discretization of a vortex filament is studied. A discrete vortex model and a discrete version of the local induction approximation technique (LIA), which guarantees that the vortex filament obeys the discrete nonlinear Schrodinger equation, is proposed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Vortex pairs in the discrete nonlinear Schrodinger equation
    Bramburger, J. J.
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    NONLINEARITY, 2020, 33 (05) : 2159 - 2180
  • [2] Vortex Solutions of the Defocusing Discrete Nonlinear Schrodinger Equation
    Cuevas, J.
    James, G.
    Kevrekidis, P. G.
    Law, K. J. H.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 135 - +
  • [3] The Cauchy problem for the fourth-order nonlinear Schrodinger equation related to the vortex filament
    Huo, ZH
    Jia, YL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) : 1 - 35
  • [4] Vortex dynamics in the nonlinear Schrodinger equation
    Quist, MJ
    PHYSICAL REVIEW B, 1999, 60 (06): : 4240 - 4244
  • [5] The vortex filament equation and a semilinear Schrodinger equation in a hermitian symmetric space
    Koiso, N
    OSAKA JOURNAL OF MATHEMATICS, 1997, 34 (01) : 199 - 214
  • [6] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [7] Nonequilibrium discrete nonlinear Schrodinger equation
    Iubini, Stefano
    Lepri, Stefano
    Politi, Antonio
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [8] Discrete nonlinear Schrodinger equation with defects
    Trombettoni, A
    Smerzi, A
    Bishop, AR
    PHYSICAL REVIEW E, 2003, 67 (01): : 166071 - 166071
  • [9] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [10] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)