Implementation of the reverse/adjoint Monte Carlo method into Geant4

被引:16
|
作者
Desorgher, L. [1 ]
Lei, F. [2 ]
Santin, G. [3 ]
机构
[1] SpaceIT GmbH, CH-3007 Bern, Switzerland
[2] QinetiQ, Aerosp Div, Farnborough GU14 OLX, Hants, England
[3] European Space Agcy ESTEC, Space Environm & Effects Sect, NL-2200 AG Noordwijk, Netherlands
关键词
Adjoint Monte Carlo; Geant4; Radiation shielding;
D O I
10.1016/j.nima.2010.06.001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have implemented the reverse/adjoint Monte Carlo method into Geant4. In this method the primary particles are tracked backward from the sensitive part of the geometry till the external source surface by following the reverse processes. By this way the computing time is spent only for tracks that are contributing to the tallies and the reverse Monte Carlo method is much more rapid than the normal forward Monte Carlo method for simulation cases where the sensitive part is small compared to the rest of the geometry and compared to the extended external source. In this paper we first present the theoretical principles of the Reverse Monte Carlo method. Then we describe how this method and the reverse processes have been implemented into Geant4. Finally we compare and discuss the simulation results obtained with the reverse and forward Monte Carlo modes in Geant4. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] The Geant4 Virtual Monte Carlo
    Hrivnacova, I.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6, 2012, 396
  • [2] GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4
    Jahnke, Lennart
    Fleckenstein, Jens
    Wenz, Frederik
    Hesser, Juergen
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (05): : 1217 - 1229
  • [3] A computationally efficient moment-preserving Monte Carlo electron transport method with implementation in Geant4
    Dixon, D. A.
    Prinja, A. K.
    Franke, B. C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2015, 359 : 20 - 35
  • [4] Geant4 Monte Carlo simulations for the LPCTrap setup
    Rodriguez, D.
    Ban, G.
    Durand, D.
    Duval, F.
    Flechard, X.
    Lienard, E.
    Mauger, F.
    Mery, A.
    Naviliat-Cuncic, O.
    Thomas, J. -C.
    Velten, Ph.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2009, 42 (03): : 397 - 400
  • [5] A framework for Monte Carlo simulation calculations in GEANT4
    Walker, B.
    Figgins, J.
    Comfort, J. R.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 568 (02): : 889 - 895
  • [6] Geant4 Monte Carlo simulations for the LPCTrap setup
    D. Rodríguez
    G. Ban
    D. Durand
    F. Duval
    X. Fléchard
    E. Liénard
    F. Mauger
    A. Méry
    O. Naviliat-Cuncic
    J. -C. Thomas
    Ph. Velten
    [J]. The European Physical Journal A, 2009, 42 : 397 - 400
  • [7] Monte Carlo simulations in proton dosimetry with Geant4
    Moravek, Z
    Bogner, L
    [J]. RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S62 - S62
  • [8] Applications of the Monte Carlo method in nuclear physics using the GEANT4 toolkit
    Moralles, Mauricio
    Guimaraes, Carla C.
    Bonifacio, Daniel A. B.
    Okuno, Emico
    Murata, Helio M.
    Bottaro, Marcio
    Menezes, Mario O.
    Guimaraes, Valdir
    [J]. NUCLEAR PHYSICS 2008: XXXI WORKSHOP ON NUCLEAR PHYSICS IN BRAZIL, 2009, 1139 : 51 - +
  • [9] Proton Source Modeling for Geant4 Monte Carlo Simulations
    Barnes, S.
    McAuley, G.
    Wroe, A.
    Slater, J.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3756 - 3757
  • [10] Dynamic Monte Carlo Dose Calculations for IMRT in Geant4
    Hancox, C.
    Seco, J.
    Sharp, G.
    Peroni, M.
    Paganetti, H.
    [J]. MEDICAL PHYSICS, 2009, 36 (06)