Recently, among the available approaches to develop self-healable materials, 1,2,4-triazoline-3,5-dione (TAD)-based Diels-Alder (DA) chemistry has gained tremendous attention, becuase this DA reaction is very rapid under ambient conditions. This study delineates developing a self-healing hydrophobic fluorinated polymer utilizing dynamic and rapid TAD-DA chemistry. For this purpose, block copolymers of 2-hydroxyethyl methacrylate (HEMA) and 2,2,2-trifluoroethylmethacrylate (TFEMA) are prepared via reversible addition-fragmentation chain transfer polymerization. Subsequently, the pendant hydroxyl groups of the HEMA repeat units are modified with anthracenyl functionality via esterification with 9-anthracenecarboxylic acid. The tailor-made polymer-bearing anthracenyl pendants are subsequently crosslinked via a rapid DA reaction using a bifunctional TAD derivative at room temperature (r.t.). Differential scanning calorimetry (DSC) analysis is performed to interpret the thermoreversible behavior of the TAD-derived DA polymer. The self-healing characteristics of this TAD-derived DA conjugate are studied by monitoring the healing of a notched surface via AFM analysis. Interestingly, the TAD conjugated fluoropolymers are hydrophobic, as evidenced by the water contact angle analysis. Such TAD-derived DA fluoropolymer conjugates with remarkable hydrophobic characteristics and excellent self-healing features can pave a new direction in the potential materials for specialty paints, coatings, and adhesives.