Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics

被引:22
|
作者
Cuadra, Meritxell Bach [1 ,2 ,3 ,4 ]
Favre, Julien [5 ,6 ]
Omoumi, Patrick [1 ,2 ,5 ,6 ]
机构
[1] Lausanne Univ Hosp, Dept Radiol, Lausanne, Switzerland
[2] Univ Lausanne UNIL, Lausanne, Switzerland
[3] Lausanne Univ Hosp CHUV, Ctr Imagerie BioMed CIBM, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, Lausanne, Switzerland
[5] Lausanne Univ Hosp, Dept Musculoskeletal Med, Swiss BioMot Lab, Lausanne, Switzerland
[6] Univ Lausanne, Lausanne, Switzerland
关键词
artificial intelligence; radiomics; musculoskeletal imaging; radiology; MAGNETIC-RESONANCE IMAGES; TRABECULAR BONE-STRUCTURE; ACTIVE SHAPE MODELS; MULTI-CONTRAST MR; TEXTURE ANALYSIS; ARTICULAR-CARTILAGE; SEMIAUTOMATED SOFTWARE; AUTOMATIC SEGMENTATION; CT EMPHASIS; KNEE;
D O I
10.1055/s-0039-3400268
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Although still limited in clinical practice, quantitative analysis is expected to increase the value of musculoskeletal (MSK) imaging. Segmentation aims at isolating the tissues and/or regions of interest in the image and is crucial to the extraction of quantitative features such as size, signal intensity, or image texture. These features may serve to support the diagnosis and monitoring of disease. Radiomics refers to the process of extracting large amounts of features from radiologic images and combining them with clinical, biological, genetic, or any other type of complementary data to build diagnostic, prognostic, or predictive models. The advent of machine learning offers promising prospects for automatic segmentation and integration of large amounts of data. We present commonly used segmentation methods and describe the radiomics pipeline, highlighting the challenges to overcome for adoption in clinical practice. We provide some examples of applications from the MSK literature.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [1] Quantitative Imaging in Radiomics and Machine Learning
    Tilkin, M.
    Mayo, C.
    Deasy, J.
    Gillies, R.
    Erickson, B.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E540 - E540
  • [2] Advancing musculoskeletal tumor diagnosis: Automated segmentation and predictive classification using deep learning and radiomics
    Wang, Shuo
    Sun, Man
    Sun, Jinglai
    Wang, Qingsong
    Wang, Guangpu
    Wang, Xiaolin
    Meng, Xianghong
    Wang, Zhi
    Yu, Hui
    [J]. Computers in Biology and Medicine, 2024, 175
  • [3] Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges
    Maxwell A. Konnaris
    Matthew Brendel
    Mark Alan Fontana
    Miguel Otero
    Lionel B. Ivashkiv
    Fei Wang
    Richard D. Bell
    [J]. Arthritis Research & Therapy, 24
  • [4] Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges
    Konnaris, Maxwell A.
    Brendel, Matthew
    Fontana, Mark Alan
    Otero, Miguel
    Ivashkiv, Lionel B.
    Wang, Fei
    Bell, Richard D.
    [J]. ARTHRITIS RESEARCH & THERAPY, 2022, 24 (01)
  • [5] Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound
    Barcroft, Jennifer F.
    Linton-Reid, Kristofer
    Landolfo, Chiara
    Al-Memar, Maya
    Parker, Nina
    Kyriacou, Chris
    Munaretto, Maria
    Fantauzzi, Martina
    Cooper, Nina
    Yazbek, Joseph
    Bharwani, Nishat
    Lee, Sa Ra
    Kim, Ju Hee
    Timmerman, Dirk
    Posma, Joram
    Savelli, Luca
    Saso, Srdjan
    Aboagye, Eric O.
    Bourne, Tom
    [J]. NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [6] Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound
    Jennifer F. Barcroft
    Kristofer Linton-Reid
    Chiara Landolfo
    Maya Al-Memar
    Nina Parker
    Chris Kyriacou
    Maria Munaretto
    Martina Fantauzzi
    Nina Cooper
    Joseph Yazbek
    Nishat Bharwani
    Sa Ra Lee
    Ju Hee Kim
    Dirk Timmerman
    Joram Posma
    Luca Savelli
    Srdjan Saso
    Eric O. Aboagye
    Tom Bourne
    [J]. npj Precision Oncology, 8
  • [7] Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
    Rios, E.
    Parmar, C.
    Jermoumi, M.
    Aerts, H.
    [J]. MEDICAL PHYSICS, 2014, 41 (06) : 452 - 452
  • [8] Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation
    Parmar, Chintan
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph
    Jermoumi, Mohammed
    Carvalho, Sara
    Mak, Raymond H.
    Mitra, Sushmita
    Shankar, B. Uma
    Kikinis, Ron
    Haibe-Kains, Benjamin
    Lambin, Philippe
    Aerts, Hugo J. W. L.
    [J]. PLOS ONE, 2014, 9 (07):
  • [9] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Vincenza Granata
    Roberta Fusco
    Maria Chiara Brunese
    Annabella Di Mauro
    Antonio Avallone
    Alessandro Ottaiano
    Francesco Izzo
    Nicola Normanno
    Antonella Petrillo
    [J]. La radiologia medica, 2024, 129 : 420 - 428
  • [10] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Di Mauro, Annabella
    Avallone, Antonio
    Ottaiano, Alessandro
    Izzo, Francesco
    Normanno, Nicola
    Petrillo, Antonella
    [J]. RADIOLOGIA MEDICA, 2024, 129 (03): : 420 - 428