Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy

被引:61
|
作者
Chen, Jie [1 ,2 ,3 ]
Fang, Huapan [1 ,2 ,4 ]
Hu, Yingying [1 ,2 ]
Wu, Jiayan [1 ,2 ]
Zhang, Sijia [1 ,2 ]
Feng, Yuanji [1 ,2 ]
Lin, Lin [1 ,2 ,3 ]
Tian, Huayu [1 ,2 ,3 ]
Chen, Xuesi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Polymer Ecomat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Jilin Biomed Polymers Engn Lab, Changchun 130022, Peoples R China
[4] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab CarbonBased Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Gene delivery; PD-L1; blockade; Targeted vaccine; Nanovaccines; Tumor immunotherapy; TARGETING DENDRITIC CELLS; DELIVERY; ANTIGEN; NANOPARTICLES; VACCINES; THERAPY; POLYMER; PROGRESS;
D O I
10.1016/j.bioactmat.2021.05.036
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tumor nanovaccines have potential applications in the prevention and treatment of malignant tumors. However, it remains a longstanding challenge in exploiting efficient nanocarriers for inducing potent specifically cellular immune responses. Toward this objective, we herein explore an intensive tumor immunotherapeutic strategy by combining mannosylated nanovaccines and gene regulated PD-L1 blockade for immune stimulation and killing activity. Here, we fabricate a mannose modified PLL-RT (Man-PLL-RT) mediated nanovaccines with dendritic cells (DCs) targeting capacity. Man-PLL-RT is capable of co-encapsulating with antigen (ovalbumin, OVA) and adjuvant (unmethylated cytosine-phosphate-guanine, CpG) by electrostatic interaction. This positively charged Man-PLL-RT/OVA/CpG nanovaccines can facilitate the endocytosis, maturation and cross presentation in DCs. However, the nanovaccines arouse limited inhibition of tumor growth, which is mainly due to the immunosuppressed microenvironment of tumors. Combining tumor nanovaccines with gene regulated PD-L1 blockade leads to an obvious tumor remission in B16F10 melanoma bearing mice. The collaborative strategy provides essential insights to boost the benefits of tumor vaccines by regulating the checkpoint blockade with gene therapy.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 50 条
  • [11] Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy
    Yu, Yunjian
    Li, Jie
    Song, Boyi
    Ma, Zhuang
    Zhang, Yufei
    Sun, Haonan
    Wei, Xiaosong
    Bai, Yayun
    Lu, Xueguang
    Zhang, Peng
    Zhang, Xinge
    Biomaterials, 2022, 280
  • [12] Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy
    Mayoux, Maud
    Roller, Andreas
    Pulko, Vesna
    Sammicheli, Stefano
    Chen, Stanford
    Sum, Eva
    Jost, Christian
    Fransen, Marieke F.
    Buser, Regula B.
    Kowanetz, Marcin
    Rommel, Karolin
    Matos, Ines
    Colombetti, Sara
    Belousov, Anton
    Karanikas, Vaios
    Ossendorp, Ferry
    Hegde, Priti S.
    Chen, Daniel S.
    Umana, Pablo
    Perro, Mario
    Klein, Christian
    Xu, Wei
    SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (534)
  • [13] Combining PD-1/PD-L1 blockade with type I interferon in cancer therapy
    Razaghi, Ali
    Durand-Dubief, Mickael
    Brusselaers, Nele
    Bjornstedt, Mikael
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [14] In vivo activated T cell targeting with PD-1/PD-L1 blockade for sequential treatment mediated cancer immunotherapy
    Yang, Weijing
    Zhang, Meng
    Zhang, Jinjie
    Liu, Yanlong
    Ning, Jie
    Yang, Jing
    Zhang, Zhenzhong
    Hou, Lin
    Chen, Xiaoyuan
    NANO TODAY, 2022, 44
  • [15] PD-L1 antibody conjugated dihydrotanshinone I-loaded polymeric nanoparticle for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death
    Wang, Xue
    Jing, Ziqi
    Huang, Xiaobin
    Liu, Xiaoya
    Zhang, Yujie
    Wang, Zhijun
    Ma, Pengkai
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 667
  • [16] PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy
    Bocanegra, Ana
    Blanco, Ester
    Fernandez-Hinojal, Gonzalo
    Arasanz, Hugo
    Chocarro, Luisa
    Zuazo, Miren
    Morente, Pilar
    Vera, Ruth
    Escors, David
    Kochan, Grazyna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 17
  • [17] Adipose PD-L1 modulates checkpoint blockade immunotherapy efficacy in breast cancer
    Wu, B.
    Sun, X.
    Gupta, H. B.
    Yuan, B.
    Ge, F.
    Li, J.
    Hu, Y.
    Curiel, T. J.
    Li, R.
    CANCER RESEARCH, 2019, 79 (04)
  • [18] PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition
    Wu, Yilun
    Chen, Weiyu
    Xu, Zhi Ping
    Gu, Wenyi
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [19] PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis
    Boumpas, Athina
    Papaioannou, Antonis S.
    Bousounis, Pavlos
    Grigoriou, Maria
    Bergo, Veronica
    Papafragkos, Iosif
    Tasis, Athanasios
    Iskas, Michael
    Boon, Louis
    Makridakis, Manousos
    Vlachou, Antonia
    Gavriilaki, Eleni
    Hatzioannou, Aikaterini
    Mitroulis, Ioannis
    Trompouki, Eirini
    Verginis, Panayotis
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [20] Exosomal immune checkpoint protein (PD-L1): Hidden player in PD-1/PD-L1 blockade immunotherapy resistance in oral cancer
    Rajanathadurai, Jeevitha
    Sindya, Jospin
    Madar, Inamul Hasan
    Perumal, Elumalai
    ORAL ONCOLOGY, 2024, 151