A direct GHz-clocked phase and intensity modulated transmitter applied to quantum key distribution

被引:12
|
作者
Roberts, G. L. [1 ,2 ]
Lucamarini, M. [1 ]
Dynes, J. F. [1 ]
Savory, S. J. [2 ]
Yuan, Z. L. [1 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, 208 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Engn Dept, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2018年 / 3卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
quantum cryptography; quantum key distribution; quantum communications; SECURE; PROTOCOL;
D O I
10.1088/2058-9565/aad9bd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD), a technology that enables perfectly secure communication, has evolved to the stage where many different protocols are being used in real-world implementations. Each protocol has its own advantages, meaning that users can choose the one best-suited to their application, however each often requires different hardware. This complicates multi-user networks, in which users may need multiple transmitters to communicate with one another. Here, we demonstrate a direct-modulation based transmitter that can be used to implement most weak coherent pulse-based QKD protocols with simple changes to the driving signals. This also has the potential to extend to classical communications, providing a low chirp transmitter with simple driving requirements that combines phase shift keying with amplitude shift keying. We perform QKD with concurrent time-bin and phase modulation, alongside phase randomisation. The acquired data is used to evaluate secure key rates for time-bin encoded BB84 with decoy states and a finite key-size analysis, giving megabit per second secure key rates, 1.60 times higher than if purely phase-encoded BB84 was used.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Passive optical network approach to gigahertz-clocked multiuser quantum key distribution
    Fernandez, Veronica
    Collins, Robert J.
    Gordon, Karen J.
    Townsend, Paul D.
    Buller, Gerald S.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (01) : 130 - 138
  • [22] A short wavelength gigahertz clocked fiber-optic quantum key distribution system
    Gordon, KJ
    Fernandez, V
    Townsend, PD
    Buller, GS
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (07) : 900 - 908
  • [23] Development of Highly Surface Phase-modulated Reflection Elements for Quantum Key Distribution Systems
    Pan, Yonggang
    Wang, Youde
    Fu, Xiuhua
    Lin, Zhaowen
    Du, Xin
    Xie, Haifen
    Shi, Peng
    ACTA PHOTONICA SINICA, 2025, 54 (03)
  • [24] Dispersion Supported BB84 Quantum Key Distribution Using Phase Modulated Light
    Mora, J.
    Ruiz-Alba, A.
    Amaya, W.
    Capmany, J.
    IEEE PHOTONICS JOURNAL, 2011, 3 (03): : 433 - 440
  • [25] Impact of transmitter imbalances on the security of continuous variables quantum key distribution
    Daniel Pereira
    Margarida Almeida
    Armando N. Pinto
    Nuno A. Silva
    EPJ Quantum Technology, 2023, 10
  • [26] A fully passive transmitter for decoy-state quantum key distribution
    Zapatero, Victor
    Wang, Wenyuan
    Curty, Marcos
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
  • [27] Impact of transmitter imbalances on the security of continuous variables quantum key distribution
    Pereira, Daniel
    Almeida, Margarida
    Pinto, Armando N.
    Silva, Nuno A.
    EPJ QUANTUM TECHNOLOGY, 2023, 10 (01)
  • [28] Optical transmitter for time-bin encoding quantum key distribution
    Morales, Julian
    Aparicio, M. Guadalupe
    Longo, Carlos F.
    Arrieta, Cristian L.
    Larotonda, Miguel A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (04) : C15 - C20
  • [29] Silicon photonic transmitter for polarization-encoded quantum key distribution
    Ma, Chaoxuan
    Sacher, Wesley D.
    Tang, Zhiyuan
    Mikkelsen, Jared C.
    Yang, Yisu
    Xu, Feihu
    Thiessen, Torrey
    Lo, Hoi-Kwong
    Poon, Joyce K. S.
    OPTICA, 2016, 3 (11): : 1274 - 1278