A direct GHz-clocked phase and intensity modulated transmitter applied to quantum key distribution

被引:12
|
作者
Roberts, G. L. [1 ,2 ]
Lucamarini, M. [1 ]
Dynes, J. F. [1 ]
Savory, S. J. [2 ]
Yuan, Z. L. [1 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, 208 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Engn Dept, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2018年 / 3卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
quantum cryptography; quantum key distribution; quantum communications; SECURE; PROTOCOL;
D O I
10.1088/2058-9565/aad9bd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD), a technology that enables perfectly secure communication, has evolved to the stage where many different protocols are being used in real-world implementations. Each protocol has its own advantages, meaning that users can choose the one best-suited to their application, however each often requires different hardware. This complicates multi-user networks, in which users may need multiple transmitters to communicate with one another. Here, we demonstrate a direct-modulation based transmitter that can be used to implement most weak coherent pulse-based QKD protocols with simple changes to the driving signals. This also has the potential to extend to classical communications, providing a low chirp transmitter with simple driving requirements that combines phase shift keying with amplitude shift keying. We perform QKD with concurrent time-bin and phase modulation, alongside phase randomisation. The acquired data is used to evaluate secure key rates for time-bin encoded BB84 with decoy states and a finite key-size analysis, giving megabit per second secure key rates, 1.60 times higher than if purely phase-encoded BB84 was used.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum key distribution system clocked at 2 GHz
    Gordon, KJ
    Fernandez, V
    Buller, GS
    Rech, I
    Cova, SD
    Townsend, PD
    OPTICS EXPRESS, 2005, 13 (08): : 3015 - 3020
  • [2] Simplified intensity- and phase-modulated transmitter for modulator-free decoy-state quantum key distribution
    Lo, Y. S.
    Woodward, R. I.
    Walk, N.
    Lucamarini, M.
    De Marco, I.
    Paraiso, T. K.
    Pittaluga, M.
    Roger, T.
    Sanzaro, M.
    Yuan, Z. L.
    Shields, A. J.
    APL PHOTONICS, 2023, 8 (03)
  • [3] Directly intensity-modulated quantum key distribution
    Roberts, George L.
    Lucamarini, Marco
    Dynes, James F.
    Savory, Seb J.
    Yuan, Zhiliang
    Shields, Andrew J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [4] Stability of phase-modulated quantum key distribution systems
    Han, ZF
    Mo, XF
    Gui, YZ
    Guo, GC
    APPLIED PHYSICS LETTERS, 2005, 86 (22) : 1 - 3
  • [5] Phase-modulated free space quantum key distribution
    Miao, EL
    Mo, XF
    Gui, YZ
    Han, ZF
    Guo, GC
    ACTA PHYSICA SINICA, 2004, 53 (07) : 2123 - 2126
  • [6] Modulator-free intensity- and phase -modulated optical transmitter for quantum communications
    Woodward, R. I.
    Lo, Y. S.
    Walk, N.
    Lucamarini, M.
    De Marco, I.
    Paraiso, T. K.
    Pittaluga, M.
    Roger, T.
    Sanzaro, M.
    Yuan, Z. L.
    Shields, A. J.
    2023 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2023,
  • [7] Intensity modulation and direct detection quantum key distribution based on quantum noise
    Ikuta, Takuya
    Inoue, Kyo
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Gigahertz Clocked Quantum Key Distribution System using FPGA
    Honjo, Toshimori
    2009 35TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2009,
  • [9] Gigahertz-clocked quantum key distribution in passive optical networks
    Fernandez, Veronica
    Collins, Robert J.
    Gordon, Karen J.
    Townsend, Paul D.
    Buller, Gerald S.
    QUANTUM COMMUNICATIONS REALIZED, 2007, 6780
  • [10] Phase-Matching Quantum Key Distribution Without Intensity Modulation
    Shao, Shan-Feng
    Cao, Xiao-Yu
    Xie, Yuan-Mei
    Gu, Jie
    Liu, Wen-Bo
    Fu, Yao
    Yin, Hua-Lei
    Chen, Zeng-Bing
    PHYSICAL REVIEW APPLIED, 2023, 20 (02)