Development of a mixed control volume - Finite element method for the advection-diffusion equation with spectral convergence

被引:9
|
作者
Piller, M. [1 ]
Stalio, E. [2 ]
机构
[1] Univ Trieste, Dipartimento Ingn Civile & Ambientale, Sez Georisorse & Ambiente, I-34127 Trieste, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Ingn Meccan & Civile, I-41125 Modena, Italy
关键词
Advection-diffusion equation; Matrix conditioning; hp-Convergence; Quadrature free method; CVFEM; GALERKIN METHOD; FORMULATIONS;
D O I
10.1016/j.compfluid.2010.09.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we attack the problem of devising a finite volume method for computational fluid dynamics and related phenomena which can deal with complex geometries while attaining high-orders of accuracy and spectral convergence at a reasonable computational cost. As a first step towards this end, we propose a control volume finite element method for the solution of the advection-diffusion equation. The numerical method and its implementation are carefully tested in the paper where h- and p-convergence are checked by comparing numerical results against analytical solutions in several relevant test-cases. The numerical efficiency of a selected set of operations implemented is estimated by operation counts, ill-conditioning of coefficient matrices is avoided by using an appropriate distribution of interpolation points and control-volume edges. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [41] Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements
    Siegel, P
    Mose, R
    Ackerer, P
    Jaffre, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 24 (06) : 595 - 613
  • [42] Refining the submesh strategy in the two-level finite element method: application to the advection-diffusion equation
    Franca, LP
    Hwang, FN
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (02) : 161 - 187
  • [43] Discretization of two-dimensional advection-diffusion equation with unstructured cell center finite volume method
    Transportation College, Southeast University, Nanjing 210096, China
    不详
    Jisuan Wuli, 2009, 1 (17-26): : 17 - 26
  • [44] Adaptive domain decomposition algorithms and finite volume/finite element approximation for advection-diffusion equations
    CRS4, Cagliari, Italy
    J Sci Comput, 4 (299-341):
  • [45] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626
  • [46] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [47] Finite time Lyapunov exponent and advection-diffusion equation
    Tang, XZ
    Boozer, AH
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 95 (3-4) : 283 - 305
  • [48] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78
  • [49] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374
  • [50] FINITE-DIFFERENCE APPROXIMATIONS TO THE ADVECTION-DIFFUSION EQUATION
    WRIGHT, DG
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1992, 44A (03) : 261 - 269