Machine learning in medical imaging

被引:4
|
作者
Yan, Pingkun [1 ]
Suzuki, Kenji [2 ]
Wang, Fei [3 ]
Shen, Dinggang [4 ,5 ]
机构
[1] Philips Res North Amer, Briarcliff Manor, NY 10510 USA
[2] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[3] IBM Almaden Res Ctr, User Syst & Experience Res USER Grp, San Jose, CA USA
[4] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[5] Univ N Carolina, BRIC, Chapel Hill, NC USA
关键词
D O I
10.1007/s00138-013-0543-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:1327 / 1329
页数:3
相关论文
共 50 条
  • [31] Machine Learning Applied to ultrasound Imaging - the Next Step in Democratising Medical Imaging
    Rousseau, Anne-Laure
    [J]. ERCIM NEWS, 2019, (118): : 6 - 7
  • [32] A causal perspective on dataset bias in machine learning for medical imaging
    Jones, Charles
    Castro, Daniel C.
    Ribeiro, Fabio De Sousa
    Oktay, Ozan
    Mccradden, Melissa
    Glocker, Ben
    [J]. NATURE MACHINE INTELLIGENCE, 2024, 6 (02) : 138 - 146
  • [33] Artificial intelligence and machine learning for medical imaging: A technology review
    Barragan-Montero, Ana
    Javaid, Umair
    Valdes, Gilmer
    Nguyen, Dan
    Desbordes, Paul
    Macq, Benoit
    Willems, Siri
    Vandewinckele, Liesbeth
    Holmstrom, Mats
    Lofman, Fredrik
    Michiels, Steven
    Souris, Kevin
    Sterpin, Edmond
    Lee, John A.
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 242 - 256
  • [34] Machine learning for medical imaging: methodological failures and recommendations for the future
    Gaël Varoquaux
    Veronika Cheplygina
    [J]. npj Digital Medicine, 5
  • [35] A Special Section on Machine Learning in Medical Imaging and Health Informatics
    Dey, Nilanjan
    Gia Nhu Nguyen
    Dac-Nhuong Le
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (04) : 809 - 810
  • [36] A causal perspective on dataset bias in machine learning for medical imaging
    Charles Jones
    Daniel C. Castro
    Fabio De Sousa Ribeiro
    Ozan Oktay
    Melissa McCradden
    Ben Glocker
    [J]. Nature Machine Intelligence, 2024, 6 : 138 - 146
  • [37] Machine learning for medical imaging: methodological failures and recommendations for the future
    Varoquaux, Gael
    Cheplygina, Veronika
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [38] Automatic Brain Tumor Detection in Medical Imaging using Machine Learning
    Abbas, Khizar
    Khan, Prince Waqas
    Ahmed, Khan Talha
    Song, Wang-Cheoul
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 531 - 536
  • [39] Hemodynamic Modeling, Medical Imaging, and Machine Learning and Their Applications to Cardiovascular Interventions
    Kadem, Mason
    Garber, Louis
    Abdelkhalek, Mohamed
    Al-Khazraji, Baraa K.
    Keshavarz-Motamed, Zahra
    [J]. IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2023, 16 : 403 - 423
  • [40] Secure, privacy-preserving and federated machine learning in medical imaging
    Kaissis, Georgios A.
    Makowski, Marcus R.
    Ruckert, Daniel
    Braren, Rickmer F.
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (06) : 305 - 311