A New Possibilistic Clustering Method: The Possibilistic K-Modes

被引:0
|
作者
Ammar, Asma [1 ]
Elouedi, Zied [1 ]
机构
[1] Univ Tunis, LARODEC, Inst Super Gest Tunis, Le Bardo 2000, Tunisia
关键词
Clustering; possibility theory; uncertainty; categorical data; k-modes method;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the problem of clustering data pervaded by uncertainty. Dealing with uncertainty, in particular, using clustering methods can be of great interest since it helps to make a better decision. In this paper, we combine the k-modes method within the possibility theory in order to obtain a new clustering approach for uncertain categorical data; more precisely we develop the so-called possibilistic k-modes method (PKM) allowing to deal with uncertain attribute values of objects where uncertainty is presented through possibility distributions. Experimental results show good performance on well-known benchmarks.
引用
收藏
页码:413 / 419
页数:7
相关论文
共 50 条
  • [41] Initialization of K-Modes Clustering for Categorical Data
    Li Tao-ying
    Chen Yan
    Jin Zhi-hong
    Li Ye
    [J]. 2013 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2013, : 107 - 112
  • [42] Attribute value weighting in k-modes clustering
    He, Zengyou
    Xu, Xiaofei
    Deng, Shengchun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15365 - 15369
  • [43] CLEKMODES: a modified k-modes clustering algorithm
    Mastrogiannis, N.
    Giannikos, I.
    Boutsinas, B.
    Antzoulatos, G.
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (08) : 1085 - 1095
  • [44] Block Fuzzy K-modes Clustering Algorithm
    Yang, Miin-Shen
    Lin, Chih-Ying
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 384 - 389
  • [45] Privacy Protection Method for K-modes Clustering Data with Local Differential Privacy
    Zhang, Shao-Bo
    Yuan, Liu-Jie
    Mao, Xin-Jun
    Zhu, Geng-Ming
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2181 - 2188
  • [46] On Possibilistic Clustering Algorithms based on Noise Clustering
    Kanzawa, Yuchi
    [J]. 2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, : 42 - 47
  • [47] A Modified Initialization Method to Find an Initial Center for Fuzzy K-Modes Clustering
    Saranya, S.
    Jayanthi, P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [48] VALIDITY MEASURES FOR HEURISTIC POSSIBILISTIC CLUSTERING
    Viattchenin, Dmitri A.
    [J]. INFORMATION TECHNOLOGY AND CONTROL, 2010, 39 (04): : 321 - 332
  • [49] Robust Location Estimation with Possibilistic Clustering
    Chen Bin
    Li Bin
    Pan Zhisong
    [J]. 2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL III, 2009, : 312 - +
  • [50] Fuzzy and possibilistic clustering for fuzzy data
    Coppi, Renato
    D'Urso, Pierpaolo
    Giordani, Paolo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 915 - 927