Evaluation of the root system resistance against failure of urban trees using principal component analysis

被引:13
|
作者
Szoradova, A. [1 ]
Praus, L. [1 ]
Kolarik, J. [1 ]
机构
[1] Mendel Univ Brno, Dept Wood Sci, Brno 61300, Czech Republic
关键词
PINUS-PINASTER AIT; ANCHORAGE; ARCHITECTURE; STABILITY; GROWTH; STEM;
D O I
10.1016/j.biosystemseng.2013.03.001
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The resistance against failure is an important topic of recent arboricultural research. Trees in urban environments are particularly of interest because of the damage they can cause. Root system anchorage stiffness is the variable,that allows the resistance of the root soil plate against failure to be quantified repetitively and non-destructively. This study Uses principal component analysis (PCA) to evaluate tree mechanical state, when the input parameters are the load parameters and suitable-root soil plate stiffness parameter. The PCA method allows the similarity of surveyed trees within a control group with known mechanical state to be identified. Thus, the mechanical stability of surveyed trees can be evaluated. (C) 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:244 / 249
页数:6
相关论文
共 50 条
  • [1] Evaluation System of Urban Environmental Pollution Based on the Principal Component Analysis
    Zhang, Lin
    Li, Hongyan
    [J]. 2016 INTERNATIONAL CONFERENCE ON SMART CITY AND SYSTEMS ENGINEERING (ICSCSE), 2016, : 47 - 49
  • [2] A PRINCIPAL COMPONENT ANALYSIS FOR TREES
    Aydin, Burcu
    Pataki, Gabor
    Wang, Haonan
    Bullitt, Elizabeth
    Marron, J. S.
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (04): : 1597 - 1615
  • [3] Sensor Failure Detection of FASSIP System using Principal Component Analysis
    Sudarno
    Juarsa, Mulya
    Santosa, Kussigit
    Deswandri
    Sunaryo, Geni Rina
    [J]. INTERNATIONAL CONFERENCE ON NUCLEAR ENERGY TECHNOLOGIES AND SCIENCES (ICONETS 2017), 2018, 962
  • [4] Dimension reduction in principal component analysis for trees
    Alfaro, Carlos A.
    Aydin, Burcu
    Valencia, Carlos E.
    Bullitt, Elizabeth
    Ladha, Alim
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 157 - 179
  • [5] New Approaches to Principal Component Analysis for Trees
    Aydın B.
    Pataki G.
    Wang H.
    Ladha A.
    Bullitt E.
    Marron J.S.
    [J]. Statistics in Biosciences, 2012, 4 (1) : 132 - 156
  • [6] Evaluation of dissolution profiles using principal component analysis
    Adams, E
    De Maesschalck, R
    De Spiegeleer, B
    Vander Heyden, Y
    Smeyers-Verbeke, J
    Massart, DL
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2001, 212 (01) : 41 - 53
  • [7] EVALUATION OF SUGAR BEET GENOTYPES FOR ROOT TRAITS BY PRINCIPAL COMPONENT ANALYSIS AND CLUSTER ANALYSIS
    Danojevic, Dario
    Curcic, Zivko
    Nagl, Nevena
    Taski-Ajdukovic, Ksenija
    Bocanski, Jan
    [J]. GENETIKA-BELGRADE, 2016, 48 (01): : 339 - 348
  • [8] System identification using augmented principal component analysis
    Vijaysai, P
    Gudi, RD
    Lakshminarayanan, S
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 4179 - 4184
  • [9] Criticality in a multisignal system using principal component analysis
    Sanchez-Islas, Miguel
    Claudio Toledo-Roy, Juan
    Frank, Alejandro
    [J]. PHYSICAL REVIEW E, 2021, 103 (04)
  • [10] Assessing the root system of urban trees by geostatistical analysis of GPR data
    Lantini, Livia
    Trevisani, Sebastiano
    Tosti, Fabio
    Alani, Amir M.
    [J]. EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XIII, 2022, 12268