A Communication Optimization Scheme for Basis Computation of Krylov Subspace Methods on Multi-GPUs

被引:0
|
作者
Chen, Langshi [1 ]
Petiton, Serge G. [1 ,2 ]
Drummond, Leroy A. [3 ]
Hugues, Maxime [4 ]
机构
[1] Digiteo Labs Bat 565 PC 190, Maison Simulat, USR3441, F-91191 Gif Sur Yvette, France
[2] Univ Sci & Technol Lille, Lab Informat Fondamentale Lille, F-59650 Villeneuve Dascq, France
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] INRIA Saclay, F-91120 Palaiseau, France
来源
HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2014 | 2015年 / 8969卷
关键词
Krylov subspace; Auto-tuning; Arnoldi orthogonalization;
D O I
10.1007/978-3-319-17353-5_1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Krylov Subspace Methods (KSMs) are widely used for solving large-scale linear systems and eigenproblems. However, the computation of Krylov subspace bases suffers from the overhead of performing global reduction operations when computing the inner vector products in the orthogonalization steps. In this paper, a hypergraph based communication optimization scheme is applied to Arnoldi and incomplete Arnoldi methods of forming Krylov subspace basis from sparse matrix, and features of these methods are compared in a analytical way. Finally, experiments on a CPU-GPU heterogeneous cluster show that our optimization improves the Arnoldi methods implementations for a generic matrix, and a benefit of up to 10x speedup for some special diagonal structured matrix. The performance advantage also varies for different subspace sizes and matrix formats, which requires a further integration of auto-tuning strategy.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 50 条
  • [21] A new approach for solving singular systems in topology optimization using Krylov subspace methods
    T. Washizawa
    A. Asai
    N. Yoshikawa
    Structural and Multidisciplinary Optimization, 2004, 28 : 330 - 339
  • [22] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
    Axelsson, Owe
    Farouq, Shiraz
    Neytcheva, Maya
    NUMERICAL ALGORITHMS, 2017, 74 (01) : 19 - 37
  • [23] Majorization-minimization generalized Krylov subspace methods for - optimization applied to image restoration
    Huang, G.
    Lanza, A.
    Morigi, S.
    Reichel, L.
    Sgallari, F.
    BIT NUMERICAL MATHEMATICS, 2017, 57 (02) : 351 - 378
  • [24] Large-scale topology optimization using preconditioned Krylov subspace methods with recycling
    Wang, Shun
    de Sturler, Eric
    Paulino, Glaucio H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (12) : 2441 - 2468
  • [25] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
    Axelsson, Owe
    Farouq, Shiraz
    Neytcheva, Maya
    NUMERICAL ALGORITHMS, 2016, 73 (03) : 631 - 663
  • [26] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problemsStokes control
    Owe Axelsson
    Shiraz Farouq
    Maya Neytcheva
    Numerical Algorithms, 2017, 74 : 19 - 37
  • [27] ANALYSIS OF SOME KRYLOV SUBSPACE METHODS FOR NORMAL MATRICES VIA APPROXIMATION THEORY AND CONVEX OPTIMIZATION
    Bellalij, M.
    Saad, Y.
    Sadok, H.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 33 : 17 - 30
  • [28] A Krylov-Subspace-Based Exponential Time Integration Scheme for Discontinuous Galerkin Time-Domain Methods
    Wang, Jiawei
    Chen, Feng
    Ma, Xikui
    Shao, Jinghui
    Kang, Zhen
    Yin, Shuli
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [29] A new backward recursion for the Multi-Stage Nested Wiener Filter employing Krylov subspace methods
    Joham, M
    Sun, Y
    Zoltowski, MD
    Honig, M
    Goldstein, JS
    2001 MILCOM, VOLS 1 AND 2, PROCEEDINGS: COMMUNICATIONS FOR NETWORK-CENTRIC OPERATIONS: CREATING THE INFORMATION FORCE, 2001, : 1210 - 1213
  • [30] A CLASS OF APPROXIMATE INVERSE PRECONDITIONERS BASED ON KRYLOV-SUBSPACE METHODS FOR LARGE-SCALE NONCONVEX OPTIMIZATION
    Al-Baali, Mehiddin
    Caliciotti, Andrea
    Fasano, Giovanni
    Roma, Massimo
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (03) : 1954 - 1979