Double Poisson vertex algebras and non-commutative Hamiltonian equations

被引:17
|
作者
De Sole, Alberto [2 ]
Kac, Victor G. [3 ]
Valeri, Daniele [1 ,4 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Double derivations; Double Poisson algebra; Double Poisson vertex algebra; Integrable non-commutative; Hamiltonian equation; Non-commutative de Rham and variational complexes; Non-commutative KP and; Gelfand-Dickey equations; ASSOCIATIVE ALGEBRAS;
D O I
10.1016/j.aim.2015.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the formalism of double Poisson vertex algebras (local and non-local) aimed at the study of non-commutative Hamiltonian PDEs. This is a generalization of the theory of double Poisson algebras, developed by Van den Bergh, which is used in the study of Hamiltonian ODEs. We apply our theory of double Poisson vertex algebras to non-commutative KP and Gelfand-Dickey hierarchies. We also construct the related non-commutative de Rham and variational complexes. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1025 / 1099
页数:75
相关论文
共 50 条