Fast GNSS ambiguity resolution by ant colony optimisation

被引:10
|
作者
Jazaeri, S. [1 ]
Amiri-Simkooei, A. R. [2 ]
Sharifi, M. A. [1 ]
机构
[1] Univ Tehran, Coll Engn, Dept Surveying & Geomat Engn, Tehran, Iran
[2] Univ Isfahan, Fac Engn, Dept Surveying Engn, Esfahan 8174673441, Iran
关键词
Ant colony optimisation; Integer least-squares estimation; GNSS; GNSS ambiguity resolution; GPS BASE-LINES; MIXED-INTEGER; CANONICAL THEORY; PRECISION; ALGORITHM; BRANCH; MODELS; SQP;
D O I
10.1179/1752270612Y.0000000010
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Global Navigation Satellite System (GNSS) carrier phase ambiguity resolution (AR) is the key technique to high precision positioning and navigation. Ant colony optimisation (ACO) as a stochastic meta-heuristic method solves combinatorial optimisation problems by construsting solutions iteratively using a colony of ants guided by pheromone trails and heuristic information. This paper seeks to explore the effectiveness of ACO to deal with the AR problem and closest lattice point problem. The performance of this new method is evaluated considering several simulated examples with different dimensions. The results show that the proposed algorithm can compete efficiently with other promising approaches to the problem and provide integer optimal solutions in often simulated scenarios. We hope that this paper provides a starting point for researches in applying ACO algorithm and other stochastic methods in the AR problem and other GNSS problems due to the simplicities involved in algebraic manipulation.
引用
下载
收藏
页码:190 / 196
页数:7
相关论文
共 50 条
  • [11] Dynamic ant colony optimisation for TSP
    Yong Li
    Shihua Gong
    The International Journal of Advanced Manufacturing Technology, 2003, 22 : 528 - 533
  • [12] Multiple objective ant colony optimisation
    Angus D.
    Woodward C.
    Swarm Intelligence, 2009, 3 (1) : 69 - 85
  • [13] Ant Colony Optimisation for Ligand Docking
    Korb, Oliver
    Cole, Jason
    SWARM INTELLIGENCE, 2010, 6234 : 72 - 83
  • [14] Dynamic ant colony optimisation for TSP
    Li, Y
    Gong, SH
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2003, 22 (7-8): : 528 - 533
  • [15] Model Checking the Ant Colony Optimisation
    Duarte, Lucio Mauro
    Foss, Luciana
    Wagner, Flavio Rech
    Heimfarth, Tales
    DISTRIBUTED, PARALLEL AND BIOLOGICALLY INSPIRED SYSTEMS, 2010, 329 : 221 - +
  • [16] Fast-Spanning Ant Colony Optimisation for Mobile Robot Coverage Path Planning
    Carr, Christopher
    Wang, Peng
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 463 - 474
  • [17] Improving Exploration in Ant Colony Optimisation with Antennation
    Beer, Christopher
    Hendtlass, Tim
    Montgomery, James
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [18] Data stream classification with ant colony optimisation
    Helal, Ayah
    Otero, Fernando E. B.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5725 - 5751
  • [19] Space-planning by ant colony optimisation
    Bland, JA
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 1999, 12 (06) : 320 - 328
  • [20] Near parameter free ant colony optimisation
    Randall, M
    ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2004, 3172 : 374 - 381