Surface plasmon resonance sensor based on a planar polychromatic OLED light source

被引:1
|
作者
Frischeisen, Joerg [1 ]
Reinke, Nils [1 ]
Ostermayr, Cornelia [1 ]
Neumann, Juergen [1 ]
Nowy, Stefan [1 ]
Bruetting, Wolfgang [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86159 Augsburg, Germany
来源
OPTICAL SENSORS 2008 | 2008年 / 7003卷
关键词
surface plasmon resonance; optical sensor; chemical sensor; organic light emitting diode;
D O I
10.1117/12.780522
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present a novel surface plasmon resonance (SPR) sensor based on an integrated planar and polychromatic light source. The sensor comprises an organic light emitting diode (OLED) and a metallic sensing layer located on opposite sides of a glass prism. We successfully fabricated and tested prototype sensors based on this approach by the use of different prism geometries and OLEDs with blue, green and red emission color. We investigated the angular and wavelength dependent SPR dispersion relation for sensing layers consisting of silver and gold of different thicknesses in contact with air. Further on we demonstrated the sensor function by real time monitoring of temperature changes inside an adjacent water reservoir as well as by recording the dissolving process of sodium chloride in water. This shows that the configuration can in principle be used for bio-sensing applications. The presented technique offers the advantage that there is no necessity to couple light from external bulky sources such as lasers or halogen lamps into the sensing device which makes it particularly interesting for miniaturization. The presented SPR configuration can be monolithically integrated oil one common substrate. Furthermore it is compatible with the planar glass light pipe platform for SPR sensing and the two-color approach for the determination of the thickness and the dielectric constant of thin films in a single experiment.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Surface plasmon resonance sensor based on bimetallic alloys grating
    A. Dhibi
    I. Sassi
    M. Oumezzine
    Indian Journal of Physics, 2016, 90 : 125 - 130
  • [42] LED based fiber optic surface plasmon resonance sensor
    Sarika Singh
    R. K. Verma
    B. D. Gupta
    Optical and Quantum Electronics, 2010, 42 : 15 - 28
  • [43] Spectral interferometry-based surface plasmon resonance sensor
    Hlubina, P.
    Duliakova, M.
    Kadulova, M.
    Ciprian, D.
    OPTICS COMMUNICATIONS, 2015, 354 : 240 - 245
  • [44] Graphene based surface plasmon resonance gas sensor for terahertz
    Triranjita Srivastava
    Amrita Purkayastha
    Rajan Jha
    Optical and Quantum Electronics, 2016, 48
  • [45] Design of a surface plasmon resonance sensor based on grating connection
    Jun Zhu
    Liuli Qin
    Shuxiang Song
    Junwen Zhong
    Siyuan Lin
    Photonic Sensors, 2015, 5 : 159 - 165
  • [46] Surface Plasmon Resonance Sensor Based on an Angled Optical Fiber
    Jian, Aoqun
    Deng, Lili
    Sang, Shengbo
    Duan, Qianqian
    Zhang, Xuming
    Zhang, Wendong
    IEEE SENSORS JOURNAL, 2014, 14 (09) : 3229 - 3235
  • [47] Interferometer based on a surface-plasmon resonance for sensor applications
    Kabashin, AV
    Nikitin, PI
    QUANTUM ELECTRONICS, 1997, 27 (07) : 653 - 654
  • [48] Surface plasmon resonance sensor based on bimetallic alloys grating
    Dhibi, A.
    Sassi, I.
    Oumezzine, M.
    INDIAN JOURNAL OF PHYSICS, 2016, 90 (01) : 125 - 130
  • [49] Graphene based surface plasmon resonance gas sensor for terahertz
    Srivastava, Triranjita
    Purkayastha, Amrita
    Jha, Rajan
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (06)
  • [50] Fiber Optic Surface Plasmon Resonance based Ethanol Sensor
    Verma, Roli
    Gupta, B. D.
    PHOTONIC INSTRUMENTATION ENGINEERING, 2014, 8992