Minimax and Adaptive Prediction for Functional Linear Regression

被引:128
|
作者
Cai, T. Tony [1 ]
Yuan, Ming [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Functional linear model; Minimax rate of convergence; Principal components analysis; Reproducing kernel Hilbert space; Spectral decomposition;
D O I
10.1080/01621459.2012.716337
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers minimax and adaptive prediction with functional predictors in the framework of functional linear model and reproducing kernel Hilbert space. Minimax rate of convergence for the excess prediction risk is established. It is shown that the optimal rate is determined jointly by the reproducing kernel and the covariance kernel. In particular, the alignment of these two kernels can significantly affect the difficulty of the prediction problem. In contrast, the existing literature has so far focused only on the setting where the two kernels are nearly perfectly aligned. This motivates us to propose an easily implementable data-driven roughness regularization predictor that is shown to attain the optimal rate of convergence adaptively without the need of knowing the covariance kernel. Simulation studies are carried out to illustrate the merits of the adaptive predictor and to demonstrate the theoretical results.
引用
收藏
页码:1201 / 1216
页数:16
相关论文
共 50 条
  • [21] Minimax and minimax adaptive estimation in multiplicative regression: locally bayesian approach
    Chichignoud, M.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) : 543 - 586
  • [22] On estimation and prediction in spatial functional linear regression model
    Stéphane Bouka
    Sophie Dabo-Niang
    Guy Martial Nkiet
    [J]. Lithuanian Mathematical Journal, 2023, 63 : 13 - 30
  • [23] On estimation and prediction in spatial functional linear regression model
    Bouka, Stephane
    Dabo-Niang, Sophie
    Nkiet, Guy Martial
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (01) : 13 - 30
  • [24] Distributed least squares prediction for functional linear regression*
    Tong, Hongzhi
    [J]. INVERSE PROBLEMS, 2022, 38 (02)
  • [25] Adaptive minimax testing in the discrete regression scheme
    Ghislaine Gayraud
    Christophe Pouet
    [J]. Probability Theory and Related Fields, 2005, 133 : 531 - 558
  • [26] Minimax Regression via Adaptive Nearest Neighbor
    Zhao, Puning
    Lai, Lifeng
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1447 - 1451
  • [27] Adaptive minimax testing in the discrete regression scheme
    Gayraud, G
    Pouet, C
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 531 - 558
  • [28] MINIMAX ADAPTIVE GENERALIZED RIDGE REGRESSION ESTIMATORS
    STRAWDERMAN, WE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) : 623 - 627
  • [29] Functional linear regression with functional response: Application to prediction of electricity consumption
    Antoch, Jaromir
    Prchal, Lubos
    De Rosa, Maria Rosaria
    Sarda, Pascal
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 23 - +
  • [30] Functional prediction through averaging estimated functional linear regression models
    Zhang, Xinyu
    Chiou, Jeng-Min
    Ma, Yanyuan
    [J]. BIOMETRIKA, 2018, 105 (04) : 945 - 962