New approximate solution for N-point correlation functions for heterogeneous materials

被引:29
|
作者
Baniassadi, M. [1 ,2 ]
Ahzi, S. [1 ,3 ]
Garmestani, H. [3 ]
Ruch, D. [2 ]
Remond, Y. [1 ]
机构
[1] Univ Strasbourg, IMFS CNRS, F-67000 Strasbourg, France
[2] Publ Res Ctr Henri Tudor, AMS, L-4221 Esch Sur Alzette, Luxembourg
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
N-point correlation functions; Conditional probability; Heterogeneous medium; Statistical information of microstructure; STATISTICAL CONTINUUM THEORY; EFFECTIVE CONDUCTIVITY; SIZE; MEDIA; RVE;
D O I
10.1016/j.jmps.2011.09.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Statistical N-point correlation functions are used for calculating properties of heterogeneous systems. The strength and the main advantage of the statistical continuum approach is the direct link to statistical information of microstructure. Two-point correlation functions are the lowest order of correlation functions that can describe the morphology and the microstructure-properties relationship. Experimentally, statistical pair correlation functions are obtained using SEM or small x-ray scattering techniques. Higher order correlation functions must be calculated or measured to increase the precision of the statistical continuum approach. To achieve this aim a new approximation methodology is utilized to obtain N-point correlation functions for non-FGM (functional graded materials) heterogeneous microstructures. Conditional probability functions are used to formulate the proposed theoretical approximation. In this approximation, weight functions are used to connect subsets of (N-1)-point correlation functions to estimate the full set of N-point correlation function. For the approximation of three and four point correlation functions, simple weight functions have been introduced. The results from this new approximation, for three-point probability functions, are compared to the real probability functions calculated from a computer generated three-phase reconstructed microstructure in three-dimensional space. This three-dimensional reconstruction was based on an experimental two-dimensional microstructure (SEM image) of a three-phase material. This comparison proves that our new comprehensive approximation is capable of describing higher order statistical correlation functions with the needed accuracy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 50 条