Simultaneous models for commuting holomorphic self-maps of the ball

被引:1
|
作者
Arosio, Leandro [1 ]
Bracci, Filippo [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Holomorphic iteration; Commuting mappings; Simultaneous linearization; Canonical models; ANALYTIC-FUNCTIONS; COMPOSITION OPERATORS; FIXED-POINTS; UNIT BALL; HYPERBOLIC AUTOMORPHISMS; SCHRODER EQUATION; ITERATION; VARIABLES; BOUNDARY;
D O I
10.1016/j.aim.2017.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a finite family of commuting holomorphic self-maps of the unit ball B-q subset of C-q admits a simultaneous holomorphic conjugacy to a family of commuting automorphisms of a possibly lower dimensional ball, and that such conjugacy satisfies a universal property. As an application we describe when a hyperbolic and a parabolic holomorphic self-map of B-q can commute. (c) 2017 Published by Elsevier Inc.
引用
收藏
页码:486 / 512
页数:27
相关论文
共 50 条
  • [21] Holomorphic vector fields and proper holomorphic self-maps of Reinhardt domains
    Berteloot, F
    [J]. ARKIV FOR MATEMATIK, 1998, 36 (02): : 241 - 254
  • [22] Continuous semigroups of holomorphic self-maps of the unit disc
    Shoikhet, David
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (04):
  • [23] Area of Julia Sets of Holomorphic Self-Maps on C
    方丽萍
    [J]. ActaMathematicaSinica., 1993, (02) - 165
  • [24] Area of Julia Sets of Holomorphic Self-Maps on C
    方丽萍
    [J]. Acta Mathematica Sinica,English Series, 1993, (02) : 160 - 165
  • [26] Proper holomorphic self-maps of symmetric powers of balls
    Debraj Chakrabarti
    Christopher Grow
    [J]. Archiv der Mathematik, 2018, 110 : 45 - 52
  • [27] Holomorphic self-maps of the disk intertwining two linear fractional maps
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    Martin, Maria J.
    Vukotic, Dragan
    [J]. TOPICS IN COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 561 : 199 - +
  • [28] Linear fractional self-maps of the unit ball
    Pilla, Michael R.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 458 - 468
  • [29] Proper holomorphic self-maps of symmetric powers of balls
    Chakrabarti, Debraj
    Grow, Christopher
    [J]. ARCHIV DER MATHEMATIK, 2018, 110 (01) : 45 - 52
  • [30] On proper holomorphic self-maps of generalized complex ellipsoids
    Hidetaka Hamada
    [J]. The Journal of Geometric Analysis, 1998, 8 (3): : 441 - 446