Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure

被引:28
|
作者
Jakhar, Mukesh [1 ]
Singh, Jaspreet [1 ]
Kumar, Ashok [1 ]
Tankeshwar, K. [2 ,3 ]
机构
[1] Cent Univ Punjab, Dept Phys Sci, Sch Basic & Appl Sci, Bathinda 151001, India
[2] Guru Jambheshwar Univ Sci & Technol, Dept Phys, Hisar 125001, Haryana, India
[3] Panjab Univ, Dept Phys, Chandigarh 160014, India
关键词
density functional theory; heterostructure; Schottky contact; pressure; electric field; GRAPHENE; TRANSITION; MONOLAYER; PDSE2; PHOSPHORENE; ELECTRONICS; TRANSPORT; PHASE;
D O I
10.1088/1361-6528/ab5de1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A two-dimensional van der Waals (vdW) heterostructure (PdSe2/ZT-MoSe2) has been investigated through vdW corrected density functional theory. ZT-MoSe2 acts as a Dirac material with an anisotropic Dirac cone and variable Fermi velocity (0.52-1.91 x 10(5) ms(-1)). The intrinsic Schottky barrier height can be effectively tuned by applying external pressure and an electric field to the heterostructure. The p-type Schottky barrier transforms into a p-type ohmic contact at pressure P 16 GPa. A positive electric field induces p-type ohmic contact while a negative electric field results in the transition from p-type Schottky contact to n-type Schottky contact, and finally to n-type ohmic contact at the higher values of the field. Moreover, the external positive (negative) electric field induces n-type (p-type) doping of ZT-MoSe2 in the heterostructure and remarkably controls the charge carrier concentration. Our results demonstrate that controlling the external pressure and electric field in a PdSe2/ZT-MoSe2 heterostructure can result in an unprecedented opportunity for the design of high-performance nanodevices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] PdSe2/MoSe2: a promising van der Waals heterostructure for field effect transistor application
    Awasthi, Chetan
    Khan, Afzal
    Islam, S. S.
    NANOTECHNOLOGY, 2024, 35 (19)
  • [2] 2D and 1D Heterostructures based on ZT-MoSe2 and PdSe2
    Jakhar, Mukesh
    Singh, Jaspreet
    Srivastava, Sunita
    Kumar, Ashok
    DAE SOLID STATE PHYSICS SYMPOSIUM 2019, 2020, 2265
  • [3] Tuning of Schottky Barriers in Borophene/MoS2 Van der Waals Heterostructure by External Electric Field
    Katoch, Neha
    Thakur, Rajesh
    Kumar, Ashok
    Ahluwalia, P. K.
    Kumar, Jagdish
    DAE SOLID STATE PHYSICS SYMPOSIUM 2018, 2019, 2115
  • [4] A type-I van der Waals heterostructure formed by monolayer WS2 and trilayer PdSe2
    Li, Guili
    Zhang, Xiaoxian
    Wang, Yongsheng
    Liu, XiaoJing
    Ren, FangYing
    He, Jiaqi
    He, Dawei
    Zhao, Hui
    NANOSCALE, 2024, 16 (46) : 21471 - 21481
  • [5] Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface
    Sata, Yohta
    Moriya, Rai
    Morikawa, Sei
    Yabuki, Naoto
    Masubuchi, Satoru
    Machida, Tomoki
    APPLIED PHYSICS LETTERS, 2015, 107 (02)
  • [6] Van der Waals direction transformation induced by shear strain in layered PdSe2
    Lv, Peng
    Tang, Gang
    Liu, Yanyu
    Lun, Yingzhuo
    Wang, Xueyun
    Hong, Jiawang
    EXTREME MECHANICS LETTERS, 2021, 44
  • [7] Modulation of electronic structures of MoSe2/WSe2 van der Waals heterostructure by external electric field
    Zhang, Fang
    Li, Wei
    Dai, Xianqi
    SOLID STATE COMMUNICATIONS, 2017, 266 : 11 - 15
  • [8] Nanoscale Probing of Electrical Memory Effects in van der Waals Layered PdSe2
    Neumayer, Sabine M.
    Olunloyo, Olugbenga
    Maksymovych, Petro
    Xiao, Kai
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3665 - 3673
  • [9] Tunable Schottky and ohmic contacts in the Ti2NF2/α-Te van der Waals heterostructure
    Jiang, Jingwen
    Xu, Yiguo
    Zhang, Xiuwen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (35) : 21388 - 21395
  • [10] A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts
    Zhang, Xuran
    Dai, Mingjin
    Deng, Wenjie
    Zhang, Yongzhe
    Wang, Qi Jie
    NANOPHOTONICS, 2023, 12 (03) : 607 - 618