KEISLER'S ORDER IS NOT LINEAR, ASSUMING A SUPERCOMPACT

被引:4
|
作者
Ulrich, Douglas [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
uncountable model theory; Keisler's order; ultraproducts; ULTRAFILTERS;
D O I
10.1017/jsl.2018.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if there is a supercompact cardinal, then Keisler's order is not linear. More specifically, let T-n,T-k be the theory of the generic n-clique free k-ary graph for any n > k >= 3, and let T-Cas be the simple nonlow theory described by Casanovas in [2]. Then we show that T-Cas (sic) T-n,T-k always, and if there is a supercompact cardinal then T-n,T-k (sic) T-Cas.
引用
收藏
页码:634 / 641
页数:8
相关论文
共 50 条
  • [1] Realization of φ-types and Keisler's order
    Malliaris, M. E.
    ANNALS OF PURE AND APPLIED LOGIC, 2009, 157 (2-3) : 220 - 224
  • [2] THE TURING DEGREES AND KEISLER'S ORDER
    Malliaris, Maryanthe
    Shelah, Saharon
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (01) : 331 - 341
  • [3] Keisler’s order via Boolean ultrapowers
    Francesco Parente
    Archive for Mathematical Logic, 2021, 60 : 425 - 439
  • [4] Keisler's order via Boolean ultrapowers
    Parente, Francesco
    ARCHIVE FOR MATHEMATICAL LOGIC, 2021, 60 (3-4) : 425 - 439
  • [5] KEISLER'S ORDER HAS INFINITELY MANY CLASSES
    Malliaris, Maryanthe
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 224 (01) : 189 - 230
  • [6] Keisler’s order has infinitely many classes
    Maryanthe Malliaris
    Saharon Shelah
    Israel Journal of Mathematics, 2018, 224 : 189 - 230
  • [7] Keisler's order is not simple (and simple theories may not be either)
    Malliaris, M.
    Shelah, S.
    ADVANCES IN MATHEMATICS, 2021, 392
  • [8] The Keisler Order in Continuous Logic
    Nathanael Leedom Ackerman
    Mary Leah Karker
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3211 - 3237
  • [9] The Keisler Order in Continuous Logic
    Ackerman, Nathanael Leedom
    Karker, Mary Leah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3211 - 3237
  • [10] On the Rudin-Keisler order on ultrafilters
    Gryzlov, A
    TOPOLOGY AND ITS APPLICATIONS, 1997, 76 (02) : 151 - 155