Realization of φ-types and Keisler's order

被引:20
|
作者
Malliaris, M. E. [1 ]
机构
[1] Univ Calif Berkeley, Log Grp, Berkeley, CA 94720 USA
关键词
Saturation of ultrapowers; Keisler's order; Unstable theories; Regular filters;
D O I
10.1016/j.apal.2008.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the analysis of Keisler's order can be localized to the study of phi-types. Specifically, if D is a regular ultrafilter on lambda such that lcf (omega, D) >= lambda(+) and M is a model whose theory is countable, then M-lambda/D is lambda(+)-saturated iff it realizes all phi-types of size X. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 224
页数:5
相关论文
共 50 条
  • [1] THE TURING DEGREES AND KEISLER'S ORDER
    Malliaris, Maryanthe
    Shelah, Saharon
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (01) : 331 - 341
  • [2] KEISLER'S ORDER IS NOT LINEAR, ASSUMING A SUPERCOMPACT
    Ulrich, Douglas
    JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (02) : 634 - 641
  • [3] Keisler’s order via Boolean ultrapowers
    Francesco Parente
    Archive for Mathematical Logic, 2021, 60 : 425 - 439
  • [4] Keisler's order via Boolean ultrapowers
    Parente, Francesco
    ARCHIVE FOR MATHEMATICAL LOGIC, 2021, 60 (3-4) : 425 - 439
  • [5] Maximal Tukey types, P-ideals and the weak Rudin–Keisler order
    Konstantinos A. Beros
    Paul B. Larson
    Archive for Mathematical Logic, 2024, 63 : 325 - 352
  • [6] KEISLER'S ORDER HAS INFINITELY MANY CLASSES
    Malliaris, Maryanthe
    Shelah, Saharon
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 224 (01) : 189 - 230
  • [7] Keisler’s order has infinitely many classes
    Maryanthe Malliaris
    Saharon Shelah
    Israel Journal of Mathematics, 2018, 224 : 189 - 230
  • [8] Keisler's order is not simple (and simple theories may not be either)
    Malliaris, M.
    Shelah, S.
    ADVANCES IN MATHEMATICS, 2021, 392
  • [9] The Keisler Order in Continuous Logic
    Nathanael Leedom Ackerman
    Mary Leah Karker
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3211 - 3237
  • [10] The Keisler Order in Continuous Logic
    Ackerman, Nathanael Leedom
    Karker, Mary Leah
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3211 - 3237