Trapped ion mobility spectrometry: A short reviewMark

被引:221
|
作者
Ridgeway, Mark E. [1 ]
Lubeck, Markus [2 ]
Jordens, Jan [3 ]
Mann, Mattias [4 ]
Park, Melvin A. [1 ]
机构
[1] Bruker Daltonics Inc, Billerica, MA 01821 USA
[2] Bruker Daltonik GmbH, Fahrenheitstr 4, D-28359 Bremen, Germany
[3] DSM Resolve, Urmonderbaan 22, NL-6160 MD Geleen, Netherlands
[4] Max Planck Inst Biochem, Prote & Signal Transduct, Klopferspitz 18, D-82152 Martinsried, Germany
关键词
Trapped ion mobility; TIMS; PASEF; Parallel accumulation serial fragmentatio; Gated-TIMS; Selective accumlation; Ion funnel; High resolution; Parallel acuumlation; DATA-INDEPENDENT ACQUISITION; FLIGHT MASS-SPECTROMETRY; PLASMA CHROMATOGRAPHY; PROTEIN COMPLEXES; DISSOCIATION; PEPTIDE; FUNNEL; QUANTIFICATION; FUNDAMENTALS; SENSITIVITY;
D O I
10.1016/j.ijms.2018.01.006
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Trapped ion mobility spectrometry (TIMS) hybridized with mass spectrometry (MS) is a relatively recent advance in the field of ion mobility mass spectrometry (IMMS). The basic idea behind TIMS is the reversal of the classic drift cell analyzer. Rather than driving ions through a stationary gas, as in a drift cell, TIMS holds the ions stationary in a moving column of gas. This has the immediate advantage that the physical dimension of the analyzer can be small (similar to 5 cm) whereas the analytical column of gas-the column that flows past during the course of an analysis - can be large (as much as 10 m) and user defined. In the years since the first publication, TIMS has proven to be a highly versatile alternative to drift tube ion mobility achieving high resolving power (R similar to 300), duty cycle (100%), and efficiency (similar to 80%). In addition to its basic performance specifications, the flexibility of TIMS allows it to be adapted to a variety of applications. This is highlighted particularly by the PASEF (parallel accumulation serial fragmentation) workflow, which adapts TIMS-MS to the shotgun proteomics application. In this brief review, the general operating principles, theory, and a number of TIMS-MS applications are summarized. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 35
页数:14
相关论文
共 50 条
  • [21] Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics
    Silveira, Joshua A.
    Michelmann, Karsten
    Ridgeway, Mark E.
    Park, Melvin A.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (04) : 585 - 595
  • [22] Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry
    Bleiholder, Christian
    Liu, Fanny C.
    Chai, Mengqi
    ANALYTICAL CHEMISTRY, 2020, 92 (24) : 16329 - 16333
  • [23] Insights on the structural integrity of knot proteins using trapped ion mobility spectrometry - mass spectrometry
    Fouque, Kevin Jeanne Dit
    Leng, Fenfei
    Fernandez-Lima, Francisco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics
    Charkow, Joshua
    Rost, Hannes L.
    ANALYTICAL CHEMISTRY, 2021, 93 (50) : 16751 - 16758
  • [25] Fast screening of polycyclic aromatic hydrocarbons using trapped ion mobility spectrometry - mass spectrometry
    Castellanos, A.
    Benigni, P.
    Hernandez, D. R.
    DeBord, J. D.
    Ridgeway, M. E.
    Park, M. A.
    Fernandez-Lima, F.
    ANALYTICAL METHODS, 2014, 6 (23) : 9328 - 9332
  • [26] Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics
    Meier, Florian
    Park, Melvin A.
    Mann, Matthias
    MOLECULAR & CELLULAR PROTEOMICS, 2021, 20
  • [27] Integration of Trapped Ion Mobility Spectrometry and Ultraviolet Photodissociation in a Quadrupolar Ion Trap Mass Spectrometer
    Santos-Fernandez, Miguel
    Jeanne Dit Fouque, Kevin
    Fernandez-Lima, Francisco
    ANALYTICAL CHEMISTRY, 2023, 95 (22) : 8417 - 8422
  • [28] Probing the structure of giant fullerenes by high resolution trapped ion mobility spectrometry
    Weis, Patrick
    Hennrich, Frank
    Fischer, Regina
    Schneider, Erik K.
    Neumaier, Marco
    Kappes, Manfred M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (35) : 18877 - 18892
  • [29] Yellow Fever Blood Proteomics Study by Trapped Ion Mobility Mass Spectrometry
    Assis, Diego
    Santos, Jaqueline
    Moraes, Juliana
    Campos, Patricia
    Gordon, Elizabeth
    Silva, Marcos
    Oliveira, Marluce
    Willetts, Matthew
    Borges, Marcia
    MOLECULAR & CELLULAR PROTEOMICS, 2022, 21 (08) : S61 - S61
  • [30] Response to Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry
    Morsa, Denis
    Hanozin, Emeline
    Gabelica, Valerie
    De Pauw, Edwin
    ANALYTICAL CHEMISTRY, 2020, 92 (24) : 16334 - 16337