Estimating extremes from global ocean and climate models: A Bayesian hierarchical model approach

被引:10
|
作者
Oliver, Eric C. J. [1 ,2 ]
Wotherspoon, Simon J. [1 ]
Holbrook, Neil J. [1 ,2 ]
机构
[1] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia
[2] Australian Res Council Ctr Excellence Climate Sys, Hobart, Tas, Australia
基金
澳大利亚研究理事会;
关键词
MONTE-CARLO METHOD; TEMPERATURE; PRECIPITATION; VARIABILITY; WIND; DISTRIBUTIONS; ENSEMBLE;
D O I
10.1016/j.pocean.2013.12.004
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Estimating oceanic and atmospheric extremes from global climate models is not trivial as these models often poorly represent extreme events. However, these models do tend to capture the central climate statistics well (e.g., the mean temperature, variances, etc.). Here, we develop a Bayesian hierarchical model (BHM) to improve estimates of extremes from ocean and climate models. This is performed by first modeling observed extremes using an extreme value distribution (EVD). Then, the parameters of the EVD are modeled as a function of climate variables simulated by the ocean or atmosphere model over the same time period as the observations. By assuming stationarity of the model parameters, we can estimate extreme values in a projected future climate given the climate statistics of the projected climate (e.g., a climate model projection under a specified carbon emissions scenario). The model is demonstrated for extreme sea surface temperatures off southeastern Australia using satellite-derived observations and downscaled global climate model output for the 1990s and the 2060s under an A1 B emissions scenario. Using this case study we present a suite of statistics that can be used to summarize the probabilistic results of the BHM including posterior means, 95% credible intervals, and probabilities of exceedance. We also present a method for determining the statistical significance of the modeled changes in extreme value statistics. Finally, we demonstrate the utility of the BHM to test the response of extreme values to prescribed changes in climate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 50 条
  • [31] Estimating Ganglion Cell Complex Rates of Change With Bayesian Hierarchical Models
    Mohammadzadeh, Vahid
    Su, Erica
    Zadeh, Sepideh Heydar
    Law, Simon K.
    Coleman, Anne L.
    Caprioli, Joseph
    Weiss, Robert E.
    Nouri-Mahdavi, Kouros
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (04):
  • [32] Estimating catch at age from market sampling data by using a Bayesian hierarchical model
    Hirst, D
    Aanes, S
    Storvik, G
    Huseby, RB
    Tvete, IF
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2004, 53 : 1 - 14
  • [33] A GENERAL BAYESIAN HIERARCHICAL MODEL FOR ESTIMATING SURVIVAL OF NESTS AND YOUNG
    Schmidt, Joshua H.
    Walker, Johann A.
    Lindberg, Mark S.
    Johnson, Devin S.
    Stephens, Scott E.
    [J]. AUK, 2010, 127 (02): : 379 - 386
  • [34] Testing Adaptive Toolbox Models: A Bayesian Hierarchical Approach
    Scheibehenne, Benjamin
    Rieskamp, Joerg
    Wagenmakers, Eric-Jan
    [J]. PSYCHOLOGICAL REVIEW, 2013, 120 (01) : 39 - 64
  • [35] A hierarchical Bayesian approach for calibration of stochastic material models
    Papadimas, Nikolaos
    Dodwell, Timothy
    [J]. DATA-CENTRIC ENGINEERING, 2021, 2 (02):
  • [36] A hierarchical Bayesian approach for parameter estimation in HIV models
    Banks, HT
    Grove, S
    Hu, S
    Ma, YY
    [J]. INVERSE PROBLEMS, 2005, 21 (06) : 1803 - 1822
  • [37] Formulation of an ocean model for global climate simulations
    Griffies, S. M.
    Gnanadesikan, A.
    Dixon, K. W.
    Dunne, J. P.
    Gerdes, R.
    Harrison, M. J.
    Rosati, A.
    Russell, J. L.
    Samuels, B. L.
    Spelman, M. J.
    Winton, M.
    Zhang, R.
    [J]. OCEAN SCIENCE, 2005, 1 (01) : 45 - 79
  • [38] A Bayesian Approach for Estimating Multilevel Latent Contextual Models
    Zitzmann, Steffen
    Luedtke, Oliver
    Robitzsch, Alexander
    Marsh, Herbert W.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (05) : 661 - 679
  • [39] Modelling ocean wave climate with a Bayesian hierarchical space-time model and a log-transform of the data
    Vanem, Erik
    Huseby, Arne Bang
    Natvig, Bent
    [J]. OCEAN DYNAMICS, 2012, 62 (03) : 355 - 375
  • [40] EXPERIMENT WITH A SIMPLE OCEAN-ATMOSPHERE CLIMATE MODEL - ROLE OF OCEAN IN GLOBAL CLIMATE
    LAU, KMW
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 293 - 294