A CRANK-NICOLSON FINITE ELEMENT METHOD AND THE OPTIMAL ERROR ESTIMATES FOR THE MODIFIED TIME-DEPENDENT MAXWELL-SCHRODINGER EQUATIONS

被引:5
|
作者
Ma, Chupeng [1 ,2 ]
Cao, Liqun [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell-Schrodinger equations; finite element method; Crank-Nicolson scheme; optimal error estimate; GINZBURG-LANDAU EQUATIONS; MODIFIED WAVE-OPERATORS; 3 SPACE DIMENSIONS; DIFFERENCE METHODS; GLOBAL EXISTENCE; COUPLED MAXWELL; GALERKIN METHOD; MODEL; SUPERCONDUCTIVITY; CONVERGENCE;
D O I
10.1137/16M1085231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a Crank-Nicolson finite element method for the modified Maxwell-Schrodinger equations, which are deduced from the time-dependent Maxwell-Schrodinger equations under some assumptions. We present an (almost) unconditionally optimal error estimate for the numerical algorithm which only requires the time step Delta t < 1. The key to our analysis is twofold. For one thing, we use some tricks to tackle the tough nonlinear terms without applying the inverse inequality to estimate the L-infinity norm of the numerical solutions and get rid of certain restrictions like Delta t <= C h(alpha) on the time step. For another, we employ a new technique to weaken the time step restriction required by the application of the discrete Gronwall inequality. Numerical tests are carried out to verify the theoretical results.
引用
收藏
页码:369 / 396
页数:28
相关论文
共 50 条
  • [41] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [42] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    Shi, F.
    Cao, Y.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [43] Optimal Error Estimates of SAV Crank–Nicolson Finite Element Method for the Coupled Nonlinear Schrödinger Equation
    Dongfang Li
    Xiaoxi Li
    Hai-wei Sun
    [J]. Journal of Scientific Computing, 2023, 97
  • [44] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Y. Rong
    J. A. Fiordilino
    F. Shi
    Y. Cao
    [J]. Journal of Scientific Computing, 2022, 92
  • [45] Modified iterated Crank-Nicolson method with improved accuracy for advection equations
    Tran, Qiqi
    Liu, Jinjie
    [J]. NUMERICAL ALGORITHMS, 2024, 95 (04) : 1539 - 1560
  • [46] Modified iterated Crank-Nicolson method with improved accuracy for advection equations
    Qiqi Tran
    Jinjie Liu
    [J]. Numerical Algorithms, 2024, 95 : 1539 - 1560
  • [47] On the Crank-Nicolson difference scheme for the time-dependent source identification problem
    Ashyralyev, A.
    Urun, M.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 102 (02): : 35 - 44
  • [48] A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations
    Zhang, Tong
    Li, ShiShun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 13 - 26
  • [49] A Crank-Nicolson type space-time finite element method for computing on moving meshes
    Hansbo, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 159 (02) : 274 - 289
  • [50] Crank-Nicolson Method of a Two-Grid Finite Volume Element Algorithm for Nonlinear Parabolic Equations
    Gong, Yunjie
    Chen, Chuanjun
    Lou, Yuzhi
    Xue, Guanyu
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (03) : 540 - 559