Utilizing the radiative transfer equation in optical tomography

被引:0
|
作者
Tarvainen, T. [1 ,2 ]
Vauhkonen, M. [1 ]
Kolehmainen, V. [1 ]
Kaipio, J. P. [1 ]
Arridge, S. R. [2 ]
机构
[1] Univ Kuopio, Dept Phys, POB 1627, FIN-70211 Kuopio, Finland
[2] Univ London Univ Coll, Dept Comp Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a method which utilizes the radiative transfer equation in optical tomography. In this approach, the radiative transfer equation is used as light propagation model in those regions in which the assumptions of the diffusion theory are not valid and the diffusion approximation is used elsewhere. Both the radiative transfer equation and the diffusion approximation are numerically solved with a finite element method. In the finite element solution of the radiative transfer equation, both the spatial and angular discretizations are implemented in piecewise linear bases.
引用
收藏
页码:730 / +
页数:3
相关论文
共 50 条
  • [21] Fluorescence tomography with simulated data based on the equation of radiative transfer
    Klose, AD
    Hielscher, AH
    OPTICS LETTERS, 2003, 28 (12) : 1019 - 1021
  • [22] Stochastic image reconstruction in bioluminescence tomography with the equation of radiative transfer
    Klose, Alexander D.
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE VII, 2007, 6434
  • [23] Optical tomography using the time-independent equation of radiative transfer - Part 1: forward model
    Klose, AD
    Netz, U
    Beuthan, J
    Hielscher, AH
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 72 (05): : 691 - 713
  • [24] Reconstruction of subdomain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data
    Arridge, S. R.
    Dorn, O.
    Kaipio, J. P.
    Kolehmainen, V.
    Schweiger, M.
    Tarvainen, T.
    Vauhkonen, M.
    Zacharopoulos, A.
    INVERSE PROBLEMS, 2006, 22 (06) : 2175 - 2196
  • [25] Optical tomography using the time-independent equation of radiative transfer - Part 2: inverse model
    Klose, AD
    Hielscher, AH
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 72 (05): : 715 - 732
  • [26] ANALYSIS OF A NUMERICAL METHOD FOR RADIATIVE TRANSFER EQUATION BASED BIOLUMINESCENCE TOMOGRAPHY
    Gong, Rongfang
    Eichholz, Joseph
    Cheng, Xiaoliang
    Han, Weimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (06) : 648 - 670
  • [27] Hybrid radiative-transfer-diffusion model for optical tomography
    Tarvainen, T
    Vauhkonen, M
    Kolehmainen, V
    Kaipio, JP
    APPLIED OPTICS, 2005, 44 (06) : 876 - 886
  • [28] Gauss-Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation
    Tarvainen, T.
    Vauhkonen, M.
    Arridge, S. R.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (17-18): : 2767 - 2778
  • [29] Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation
    Tang, Jinping
    Han, Bo
    Han, Weimin
    Bi, Bo
    Li, Li
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [30] Diffuse Optical Tomography Based on Radiative Transfer Equation with L∞ Data Fidelity and Total Variation Penalty Regularization
    Bi, Bo
    Tang, Jinping
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (06) : 1212 - 1218