Spatial assessment of the performance of multiple high-resolution satellite-based precipitation data sets over the Middle East

被引:11
|
作者
El Kenawy, Ahmed M. [1 ,2 ]
McCabe, Matthew F. [3 ]
Lopez-Moreno, Juan I. [1 ]
Hathal, Yossef [4 ]
Robaa, S. M. [5 ]
Al Budeiri, Ahmed L. [4 ]
Jadoon, Khan Zaib [6 ]
Abouelmagd, Abdou [7 ]
Eddenjal, Ali [8 ]
Dominguez-Castro, Fernando [1 ]
Trigo, Ricardo M. [9 ]
Vicente-Serrano, Sergio M. [1 ]
机构
[1] Inst Pirena Ecol, Campus Aula Dei,Avda Montanana, Zaragoza 50059, Spain
[2] Mansoura Univ, Dept Geog, Mansoura, Egypt
[3] King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Thuwal, Saudi Arabia
[4] Baghdad Univ, Dept Geog, Baghdad, Iraq
[5] Cairo Univ, Dept Astron Space Sci & Meteorol, Fac Sci, Cairo, Egypt
[6] Int Islamic Univ, Dept Civil Engn, Islamabad, Pakistan
[7] Suez Canal Univ, Dept Geol, Fac Sci, Ismailia, Egypt
[8] Libyan Natl Meteorol Ctr, Tripoli, Libya
[9] Univ Lisbon, Fac Ciencias, Inst Dom Luiz, Ctr Geofis, Lisbon, Portugal
基金
瑞典研究理事会;
关键词
CMORPH; extreme wet events; Middle East; PERSIANN; rainfall; TRMM-3B42; AFRICA REGION; PRODUCTS; EXTREMES; TEMPERATURE; TRENDS; CLIMATOLOGY; GAUGE; TMPA; VARIABILITY; DENSITY;
D O I
10.1002/joc.5968
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study presents the first comprehensive evaluation of the performance of three globally high-resolution remotely sensed products in replicating the main characteristics of rainfall over the Middle East, with special emphasis on extreme wet events. Specifically, we employed daily observational data from a network of rain gauges (N=217), spanning the retrospective period 1998-2013 and covering six countries in the Middle East (i.e., Egypt, Iraq, Jordan, Libya, Saudi Arabia, and Syria), against data derived from three global satellite-based precipitation products: the Version 7 TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis 3B42 product (TRMM-3B42), the Climate Prediction Center MORPHing technique (CMORPH), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). Alongside a range of conventional statistical error measures (e.g., bias, normalized root-mean-square error [nRMSE] and Spearman's rho correlation coefficient), this study also gives priority to evaluate the skill of these products in reproducing characteristics of extreme wet events (e.g., frequency, intensity, duration, onset, anomaly). Results demonstrate that TRMM-3B42 generally performs well in estimating rainfall totals during the rainy season (ONDJFMA), with a mean bias of 0.05mm, nRMSE of 0.15mm, and Spearman's rho of 0.74 for the whole Middle East. In contrast, PERSIANN-CDR and CMORPH-BLD underestimate the observed rainfall. Importantly, TRMM-3B42 outperforms other products in reproducing the frequency and intensity of the most extreme wet events, while PERSIANN-CDR and CMORPH-BLD fail to reproduce these key characteristics. Notably, all products perform poorly in reproducing the climatology of the anomalous wet events in the region, indicating that careful scrutiny must be warranted before using these products, particularly for hydrological modelling. Considering the daily resolution of these remotely sensed precipitation products and their reasonable spatial resolution (0.25x0.25 degrees) in comparison to available in situ data over the Middle East, results of this work provide a solid scientific reference for national stakeholders and policy makers to decide on the most useful product for their specific applications (e.g., hydrological modelling, streamflow forecasts, water resources management, and hydrometeorological hazard assessment and mitigation).
引用
收藏
页码:2522 / 2543
页数:22
相关论文
共 50 条
  • [21] Derivation of High-resolution Local Thermal Conditions from Satellite-based Data
    Ors, Pelin Firat
    Mahdavi, Ardeshir
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 2163 - 2170
  • [22] Spatiotemporal performance evaluation of high-resolution multiple satellite and reanalysis precipitation products over the semiarid region of India
    Devadarshini, Elangovan
    Bhuvaneswari, Kulanthaivelu
    Kumar, Shanmugam Mohan
    Geethalakshmi, Vellingiri
    Dhasarathan, Manickam
    Senthil, Alagarsamy
    Senthilraja, Kandasamy
    Mushtaq, Shahbaz
    Thong, Nguyen-Huy
    Mai, Thanh
    Kouadio, Louis
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (11)
  • [23] Analysis of precipitation extremes based on satellite and high-resolution gridded data set over Mediterranean basin
    Nastos, P. T.
    Kapsomenakis, J.
    Douvis, K. C.
    ATMOSPHERIC RESEARCH, 2013, 131 : 46 - 59
  • [24] An assessment of satellite-based high resolution precipitation datasets for atmospheric composition studies in the maritime continent
    Turk, F. Joseph
    Xian, Peng
    ATMOSPHERIC RESEARCH, 2013, 122 : 579 - 598
  • [25] Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography
    Derin, Yagmur
    Yilmaz, Koray K.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (04) : 1498 - 1516
  • [26] Performance Assessment of Satellite-Based Precipitation Products in the 2023 Summer Extreme Precipitation Events over North China
    Li, Zhi
    Liang, Haixia
    Chen, Sheng
    Li, Xiaoyu
    Li, Yanping
    Wei, Chunxia
    ATMOSPHERE, 2024, 15 (11)
  • [27] Satellite-based high-resolution global optimum interpolation sea surface temperature data
    Kawai, Yoshimi
    Kawamura, Hiroshi
    Takahashi, Shin
    Hosoda, Kohtaro
    Murakami, Hiroshi
    Kachi, Misako
    Guan, Lei
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C6)
  • [28] Precipitation Diurnal Cycle Assessment of Satellite-Based Estimates over Brazil
    Afonso, Joao Maria de Sousa
    Vila, Daniel Alejandro
    Gan, Manoel Alonso
    Quispe, David Pareja
    Barreto, Naurinete de Jesus da Costa
    Huaman Chinchay, Joao Henry
    Palharini, Rayana Santos Araujo
    REMOTE SENSING, 2020, 12 (14)
  • [29] Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation
    Nashwan, Mohamed Salem
    Shahid, Shamsuddin
    Dewan, Ashraf
    Ismail, Tarmizi
    Alias, Noraliani
    ATMOSPHERIC RESEARCH, 2020, 236
  • [30] Assessing the Efficacy of High-Resolution Satellite-Based PERSIANN-CDR Precipitation Product in Simulating Streamflow
    Ashouri, Hamed
    Phu Nguyen
    Thorstensen, Andrea
    Hsu, Kuo-lin
    Sorooshian, Soroosh
    Braithwaite, Dan
    JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (07) : 2061 - 2076