New integral representations of the Maslov canonical operator in singular charts

被引:32
|
作者
Dobrokhotov, S. Yu. [1 ]
Nazaikinskii, V. E. [1 ]
Shafarevich, A. I. [1 ,2 ]
机构
[1] Moscow Inst Phys & Technol, Russian Acad Sci, Ishlinsky Inst Problems Mech, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Natl Res Ctr Kurchatov Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Maslov canonical operator; Fourier integral operator; integral representation; asymptotic formula; 2-DIMENSIONAL SCHRODINGER OPERATOR; STRONG MAGNETIC-FIELD; SPECTRAL SERIES; ASYMPTOTICS; WAVE;
D O I
10.1070/IM8470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a new integral representation of the Maslov canonical operator convenient in numerical-analytical calculations, present an algorithm implementing this representation, and consider a number of examples.
引用
收藏
页码:286 / 328
页数:43
相关论文
共 50 条
  • [1] New Integral Representations for the Maslov Canonical Operator on an Isotropic Manifold with a Complex Germ
    A. I. Klevin
    [J]. Russian Journal of Mathematical Physics, 2022, 29 : 183 - 213
  • [2] New Integral Representations for the Maslov Canonical Operator on an Isotropic Manifold with a Complex Germ
    Klevin, A., I
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2022, 29 (02) : 183 - 213
  • [3] Representations of rapidly decaying functions by the Maslov canonical operator
    Dobrokhotov, S. Yu.
    Tirozzi, B.
    Shafarevich, A. I.
    [J]. MATHEMATICAL NOTES, 2007, 82 (5-6) : 713 - 717
  • [4] Representations of rapidly decaying functions by the Maslov canonical operator
    S. Yu. Dobrokhotov
    B. Tirozzi
    A. I. Shafarevich
    [J]. Mathematical Notes, 2007, 82 : 713 - 717
  • [5] New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems
    Allilueva, A. I.
    Dobrokhotov, S. Yu.
    Sergeev, S. A.
    Shafarevich, A. I.
    [J]. DOKLADY MATHEMATICS, 2015, 92 (02) : 548 - 553
  • [6] New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems
    A. I. Allilueva
    S. Yu. Dobrokhotov
    S. A. Sergeev
    A. I. Shafarevich
    [J]. Doklady Mathematics, 2015, 92 : 548 - 553
  • [7] Maslov’s canonical operator in abstract spaces
    O. Yu. Shvedov
    [J]. Mathematical Notes, 1999, 65 : 365 - 380
  • [8] Representation of Bessel functions by the Maslov canonical operator
    Dobrokhotov, S. Yu
    Minenkov, D. S.
    Nazaikinskii, V. E.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1018 - 1037
  • [9] Maslov's canonical operator in abstract spaces
    Shvedov, OY
    [J]. MATHEMATICAL NOTES, 1999, 65 (3-4) : 365 - 380
  • [10] Representation of Bessel functions by the Maslov canonical operator
    S. Yu. Dobrokhotov
    D. S. Minenkov
    V. E. Nazaikinskii
    [J]. Theoretical and Mathematical Physics, 2021, 208 : 1018 - 1037