confidence interval;
coverage error;
edgeworth expansion;
iterated bootstrap;
Monte Carlo simulation;
resample;
simulation;
D O I:
10.1111/1467-9868.00245
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We show that, in the context of double-bootstrap confidence intervals, linear interpolation at the second level of the double bootstrap can reduce the simulation error component of coverage error by an order of magnitude. Intervals that are indistinguishable in terms of coverage error with theoretical, infinite simulation, double-bootstrap confidence intervals may be obtained at substantially less computational expense than by using the standard Monte Carlo approximation method. The intervals retain the simplicity of uniform bootstrap sampling and require no special analysis or computational techniques. Interpolation at the first level of the double bootstrap is shown to have a relatively minor effect on the simulation error.
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Hom, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Hom, Hong Kong, Peoples R China
Lee, Stephen M. S.
Lai, P. Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Hom, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Hom, Hong Kong, Peoples R China