Computational algorithms for double bootstrap confidence intervals

被引:25
|
作者
Nankervis, JC [1 ]
机构
[1] Univ Essex, Dept Accounting Finance & Management, Colchester CO4 3SQ, Essex, England
关键词
double bootstrap; confidence intervals; stopping rules; Monte Carlo;
D O I
10.1016/j.csda.2004.05.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In some cases, such as in the estimation of impulse responses, it has been found that for plausible sample sizes the coverage accuracy of single bootstrap confidence intervals can be poor. The error in the coverage probability of single bootstrap confidence intervals may be reduced by the use of double bootstrap confidence intervals. The computer resources required for double bootstrap confidence intervals are often prohibitive, especially in the context of Monte Carlo studies. Double bootstrap confidence intervals can be estimated using computational algorithms incorporating simple deterministic stopping rules that avoid unnecessary computations. These algorithms may make the use and Monte Carlo evaluation of double bootstrap confidence intervals feasible in cases where otherwise they would not be feasible. The efficiency gains due to the use of these algorithms are examined by means of a Monte Carlo study for examples of confidence intervals for a mean and for the cumulative impulse response in a second order autoregressive model. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 475
页数:15
相关论文
共 50 条
  • [1] Better confidence intervals: The double bootstrap with no pivot
    Letson, D
    McCullough, BD
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1998, 80 (03) : 552 - 559
  • [2] Double block bootstrap confidence intervals for dependent data
    Lee, Stephen M. S.
    Lai, P. Y.
    [J]. BIOMETRIKA, 2009, 96 (02) : 427 - 443
  • [3] Bootstrap confidence intervals
    DiCiccio, TJ
    Efron, B
    [J]. STATISTICAL SCIENCE, 1996, 11 (03) : 189 - 212
  • [4] Computation of Exact Bootstrap Confidence Intervals: Complexity and Deterministic Algorithms
    Bertsimas, Dimitris
    Sturt, Bradley
    [J]. OPERATIONS RESEARCH, 2020, 68 (03) : 949 - 964
  • [5] FAST AND ACCURATE APPROXIMATE DOUBLE BOOTSTRAP CONFIDENCE-INTERVALS
    DICICCIO, TJ
    MARTIN, MA
    YOUNG, GA
    [J]. BIOMETRIKA, 1992, 79 (02) : 285 - 295
  • [6] BETTER BOOTSTRAP CONFIDENCE-INTERVALS - BALM FOR BOOTSTRAP CONFIDENCE-INTERVALS - COMMENT
    PETERS, SC
    FREEDMAN, DA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 186 - 187
  • [7] BOOTSTRAP CONFIDENCE-INTERVALS
    BABU, GJ
    BOSE, A
    [J]. STATISTICS & PROBABILITY LETTERS, 1988, 7 (02) : 151 - 160
  • [8] BOOTSTRAP CONFIDENCE-INTERVALS AND BOOTSTRAP APPROXIMATIONS
    DICICCIO, T
    TIBSHIRANI, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 163 - 170
  • [9] ON THE BOOTSTRAP AND CONFIDENCE-INTERVALS
    HALL, P
    [J]. ANNALS OF STATISTICS, 1986, 14 (04): : 1431 - 1452
  • [10] Bootstrap confidence intervals in DirectLiNGAM
    Thamvitayakul, Kittitat
    Shimizu, Shohei
    Ueno, Tsuyoshi
    Washio, Takashi
    Tashiro, Tatsuya
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 659 - 668