Dolomite application to acidic soils: a promising option for mitigating N2O emissions

被引:60
|
作者
Shaaban, Muhammad [1 ]
Peng, Qi-an [1 ]
Hu, Ronggui [1 ]
Wu, Yupeng [1 ]
Lin, Shan [1 ]
Zhao, Jinsong [1 ]
机构
[1] Huazhong Agr Univ, Coll Resources & Environm, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrous oxide; Dolomite; Soil acidification; Nitrogen fertilizer; Soil moisture; Soil pH; NITROUS-OXIDE EMISSIONS; NITRIFIER DENITRIFICATION; FERTILIZER APPLICATION; ORGANIC-CARBON; WATER CONTENT; N FERTILIZER; PH; GRASSLAND; LIME; NITRIFICATION;
D O I
10.1007/s11356-015-5238-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil acidification is one of the main problems to crop productivity as well as a potent source of atmospheric nitrous oxide (N2O). Liming practice is usually performed for the amelioration of acidic soils, but the effects of dolomite application on N2O emissions from acidic soils are still not well understood. Therefore, a laboratory study was conducted to examine N2O emissions from an acidic soil following application of dolomite. Dolomite was applied to acidic soil in a factorial design under different levels of moisture and nitrogen (N) fertilizer. Treatments were as follows: dolomite was applied as 0, 1, and 2 g kg(-1) soil (named as CK, L, and H, respectively) under two levels of moisture [i.e., 55 and 90 % water-filled pore space (WFPS)]. All treatments of dolomite and moisture were further amended with 0 and 200 mg N kg(-1) soil as (NH4)(2)SO4. Soil properties such as soil pH, mineral N (NH4+-N and NO3--N), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and soil N2O emissions were analyzed throughout the study period. Application of N fertilizer rapidly increased soil N2O emissions and peaked at 0.59 mu g N2O-N kg(-1) h(-1) under 90 % WFPS without dolomite application. The highest cumulative N2O flux was 246.32 mu g N2O-N kg(-1) under 90 % WFPS without dolomite addition in fertilized soil. Addition of dolomite significantly (p <= 0.01) mitigated N2O emissions as soil pH increased, and H treatment was more effective for mitigating N2O emissions as compared to L treatment. The H treatment decreased the cumulative N2O emissions by up to 73 and 67 % under 55 and 90 % WFPS, respectively, in fertilized soil, and 60 and 68 % under 55 and 90 % WFPS, respectively, in unfertilized soil when compared to those without dolomite addition. Results demonstrated that application of dolomite to acidic soils is a promising option for mitigating N2O emissions.
引用
收藏
页码:19961 / 19970
页数:10
相关论文
共 50 条
  • [21] N2O emissions and product ratios of nitrification and denitrification are altered by K fertilizer in acidic agricultural soils
    Li, Zhiguo
    Xia, Shujie
    Zhang, Runhua
    Zhang, Runqin
    Chen, Fang
    Liu, Yi
    ENVIRONMENTAL POLLUTION, 2020, 265
  • [22] NO and N2O emissions from upland soils with the application of different types of nitrogen fertiliser
    Tsuruta, H
    Akiyama, H
    NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 277 - 282
  • [23] N2O and NO emissions from grassland soils after the application of cattle and swine excreta
    T. Watanabe
    T. Osada
    M. Yoh
    H. Tsuruta
    Nutrient Cycling in Agroecosystems, 1997, 49 : 35 - 39
  • [24] Variable effects of biochar application to soils on nitrification-mediated N2O emissions
    Yoo, Gayoung
    Lee, Yong Oon
    Won, Tae Jin
    Hyun, Jun Ge
    Ding, Weixin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 626 : 603 - 611
  • [25] N2O and NO emissions from grassland soils after the application of cattle and swine excreta
    Watanabe, T
    Osada, T
    Yoh, M
    Tsuruta, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 49 (1-3) : 35 - 39
  • [26] N2O and NO emissions by agricultural soils with low hydraulic potentials
    Garrido, F
    Hénault, C
    Gaillard, H
    Pérez, S
    Germon, JC
    SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (05): : 559 - 575
  • [27] Generalized model for NOx and N2O emissions from soils
    Parton, WJ
    Holland, EA
    Del Grosso, SJ
    Hartman, MD
    Martin, RE
    Mosier, AR
    Ojima, DS
    Schimel, DS
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D15) : 17403 - 17419
  • [28] N2O emissions from agricultural soils in Canada -: Preface
    Rochette, Philippe
    McGinn, Sean
    CANADIAN JOURNAL OF SOIL SCIENCE, 2008, 88 (02) : 131 - 132
  • [29] Developing an inventory of N2O emissions from British soils
    Sozanska, M
    Skiba, U
    Metcalfe, S
    ATMOSPHERIC ENVIRONMENT, 2002, 36 (06) : 987 - 998
  • [30] Inventories of N2O and NO emissions from European forest soils
    Kesik, M
    Ambus, P
    Baritz, R
    Brüggemann, NB
    Butterbach-Bahl, K
    Damm, M
    Duyzer, J
    Horváth, L
    Kiese, R
    Kitzler, B
    Leip, A
    Li, C
    Pihlatie, M
    Pilegaard, K
    Seufert, G
    Simpson, D
    Skiba, U
    Smiatek, G
    Vesala, T
    Zechmeister-Boltenstern, S
    BIOGEOSCIENCES, 2005, 2 (04) : 353 - 375