Empirical likelihood tests for nonparametric detection of differential expression from RNA-seq data

被引:1
|
作者
Thorne, Thomas [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
关键词
differential expression; RNA-seq; transcriptomics; ARYL-HYDROCARBON RECEPTOR; GENE-EXPRESSION; AHR; LISTS; RATIO; CHIP; KEGG;
D O I
10.1515/sagmb-2015-0095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The availability of large quantities of transcriptomic data in the form of RNA-seq count data has necessitated the development of methods to identify genes differentially expressed between experimental conditions. Many existing approaches apply a parametric model of gene expression and so place strong assumptions on the distribution of the data. Here we explore an alternate nonparametric approach that applies an empirical likelihood framework, allowing us to define likelihoods without specifying a parametric model of the data. We demonstrate the performance of our method when applied to gold standard datasets, and to existing experimental data. Our approach outperforms or closely matches performance of existing methods in the literature, and requires modest computational resources. An R package, EmpDiff implementing the methods described in the paper is available from: http://homepages.inf.ed.ac.uk/tthorne/software/packages/EmpDiff_0.99.tar.gz.
引用
收藏
页码:575 / 583
页数:9
相关论文
共 50 条
  • [41] iDEP: integrated differential expression and pathway analysis of RNA-Seq data
    Ge, Steven X.
    [J]. CANCER RESEARCH, 2018, 78 (13)
  • [42] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    [J]. BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [43] Differential Expression Analysis in RNA-seq Data Using a Geometric Approach
    Tambonis, Tiago
    Boareto, Marcelo
    Leite, Vitor B. P.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1257 - 1265
  • [44] Differential expression in RNA-seq: A matter of depth
    Tarazona, Sonia
    Garcia-Alcalde, Fernando
    Dopazo, Joaquin
    Ferrer, Alberto
    Conesa, Ana
    [J]. GENOME RESEARCH, 2011, 21 (12) : 2213 - 2223
  • [45] Detecting differential usage of exons from RNA-seq data
    Anders, Simon
    Reyes, Alejandro
    Huber, Wolfgang
    [J]. GENOME RESEARCH, 2012, 22 (10) : 2008 - 2017
  • [46] A Comparison of Methods for RNA-Seq Differential Expression Analysis and a New Empirical Bayes Approach
    Wesolowski, Sergiusz
    Birtwistle, Marc R.
    Rempala, Grzegorz A.
    [J]. BIOSENSORS-BASEL, 2013, 3 (03): : 238 - 258
  • [47] rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
    Shen, Shihao
    Park, Juw Won
    Lu, Zhi-xiang
    Lin, Lan
    Henry, Michael D.
    Wu, Ying Nian
    Zhou, Qing
    Xing, Yi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (51) : E5593 - E5601
  • [48] MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data
    Shen, Shihao
    Park, Juw Won
    Huang, Jian
    Dittmar, Kimberly A.
    Lu, Zhi-xiang
    Zhou, Qing
    Carstens, Russ P.
    Xing, Yi
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (08)
  • [49] Differential expression analysis of RNA-seq data at single-base resolution
    Frazee, Alyssa C.
    Sabunciyan, Sarven
    Hansen, Kasper D.
    Irizarry, Rafael A.
    Leek, Jeffrey T.
    [J]. BIOSTATISTICS, 2014, 15 (03) : 413 - 426
  • [50] Pathogen detection in RNA-seq data with Pathonoia
    Liebhoff, Anna-Maria
    Menden, Kevin
    Laschtowitz, Alena
    Franke, Andre
    Schramm, Christoph
    Bonn, Stefan
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)