The meshless kernel-based method of lines for solving the equal width equation

被引:20
|
作者
Dereli, Yilmaz [1 ]
Schaback, Robert [2 ]
机构
[1] Anadolu Univ, Fac Sci, Dept Math, TR-26470 Eskisehir, Turkey
[2] Univ Gottingen, Angew Mathemat NAM, D-37073 Gottingen, Germany
关键词
Radial basis functions; Solitons; Nonlinear ODEs; WAVE-EQUATION; UNDULAR BORE;
D O I
10.1016/j.amc.2012.10.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Equal Width equation governs nonlinear wave phenomena like waves in shallow water. Here, it is solved numerically by the Method of Lines using a somewhat unusual setup. There is no linearization of the nonlinear terms, no error in handling the starting approximation, and there are boundary conditions only at infinity. To achieve a space discretization of high accuracy with only few trial functions, meshless translates of radial kernels are used. In the numerical examples, the motion of solitary waves, the interaction of two and three solitary waves, the generation of wave undulation, the Maxwell initial condition, and the clash of two colliding solitary waves are simulated. Our numerical results compare favourably with results of earlier papers using other techniques. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5224 / 5232
页数:9
相关论文
共 50 条
  • [41] A Petrov-Galerkin method for equal width equation
    Roshan, Thoudam
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2730 - 2739
  • [42] KERNEL-BASED DISCRETIZATION FOR SOLVING MATRIX-VALUED PDEs
    Giesl, Peter
    Wendland, Holger
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3386 - 3406
  • [43] Solving Poisson equation with semi-analytical meshless method
    Liu, ZY
    Korvink, JG
    Guo, DM
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF DESIGN AND MANUFACTURING, VOL 1, 2002, : 571 - 574
  • [44] Fast Kernel-based Method for Anomaly Detection
    Anh Le
    Trung Le
    Khanh Nguyen
    Van Nguyen
    Thai Hoang Le
    Dat Tran
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3211 - 3217
  • [45] Kernel-based gradient evolution optimization method
    Flor-Sanchez, Carlos O.
    Resendiz-Flores, Edgar O.
    Altamirano-Guerrero, Gerardo
    [J]. INFORMATION SCIENCES, 2022, 602 : 313 - 327
  • [46] Damage diagnosis using a kernel-based method
    Chattopadhyay, A.
    Das, S.
    Coelho, C. K.
    [J]. INSIGHT, 2007, 49 (08) : 451 - 458
  • [47] A kernel-based method for nonparametric estimation of variograms
    Yu, Keming
    Mateu, Jorge
    Porcu, Emilio
    [J]. STATISTICA NEERLANDICA, 2007, 61 (02) : 173 - 197
  • [48] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458
  • [49] Kernel-based gradient evolution optimization method
    Flor-Sánchez, Carlos O.
    Reséndiz-Flores, Edgar O.
    Altamirano-Guerrero, Gerardo
    [J]. Information Sciences, 2022, 602 : 313 - 327
  • [50] Kernel-Based Meshless Approximation of One-Dimensional Oscillatory Fredholm Integral Equations
    Zaheer-ud-Din
    Siraj-ul-Islam
    [J]. FILOMAT, 2019, 33 (17) : 5743 - 5753